• 제목/요약/키워드: Nonlinear stiffness

검색결과 1,101건 처리시간 0.024초

Flexural ductility of reinforced and prestressed concrete sections with corrugated steel webs

  • Chen, X.C.;Au, F.T.K.;Bai, Z.Z.;Li, Z.H.;Jiang, R.J.
    • Computers and Concrete
    • /
    • 제16권4호
    • /
    • pp.625-642
    • /
    • 2015
  • Prestressed concrete bridges with corrugated steel webs have emerged as one of the promising bridge forms. This structural form provides excellent structural efficiency with the concrete flanges primarily taking bending and the corrugated steel webs primarily taking shear. In the design of this type of bridges, the flexural ductility and deformability as well as strength need to be carefully examined. Evaluation of these safety-related attributes requires the estimation of full-range behaviour. In this study, the full-range behaviour of beam sections with corrugated steel webs is evaluated by means of a nonlinear analytical method which uses the actual stress-strain curves of the materials and considers the path-dependence of materials. In view of the different behaviour of components and the large shear deformation of corrugated steel webs with negligible longitudinal stiffness, the assumption that plane sections remain plane may no longer be valid. The interaction between shear deformation and local bending of flanges may cause additional stress in flanges, which is considered in this study. The numerical results obtained are compared with experimental results for verification. A parametric study is undertaken to clarify the effects of various parameters on ductility, deformability and strength.

Numerical study on the performance of corrugated steel shear walls

  • Edalati, S.A.;Yadollahi, Y.;Pakar, I.;Emadi, A.;Bayat, M.
    • Wind and Structures
    • /
    • 제19권4호
    • /
    • pp.405-420
    • /
    • 2014
  • This paper examines the nonlinear behaviour of corrugated steel plate shear walls under lateral pushover load. One of the innovations in these types of walls which have used in recent years is the use of the corrugated steel shear walls rather un-stiffness plates. In the last decades many experimental studies have been done on the on the corrugated steel shear walls. A finite element analysis that includes both material and geometric nonlinearities is employed for the investigation. A comparison is made between the behaviour of steel shear walls with sinusoidal corrugated plate and trapezoidal corrugated plate. The effects of parameters such as the thickness of the corrugated plate, the corrugation depth in the corrugated plates and the corrugation length of the infill of the corrugated plates, are investigated. The results of this study have demonstrated that in the wall with constant dimensions, the trapezoidal plates have higher energy dissipation, ductility and ultimate bearing than sinusoidal waves, while decreasing the steel material consumption.

Maximum a posteriori estimation based wind fragility analysis with application to existing linear or hysteretic shear frames

  • Wang, Vincent Z.;Ginger, John D.
    • Structural Engineering and Mechanics
    • /
    • 제50권5호
    • /
    • pp.653-664
    • /
    • 2014
  • Wind fragility analysis provides a quantitative instrument for delineating the safety performance of civil structures under hazardous wind loading conditions such as cyclones and tornados. It has attracted and would be expected to continue to attract intensive research spotlight particularly in the nowadays worldwide context of adapting to the changing climate. One of the challenges encumbering efficacious assessment of the safety performance of existing civil structures is the possible incompleteness of the structural appraisal data. Addressing the issue of the data missingness, the study presented in this paper forms a first attempt to investigate the feasibility of using the expectation-maximization (EM) algorithm and Bayesian techniques to predict the wind fragilities of existing civil structures. Numerical examples of typical linear or hysteretic shear frames are introduced with the wind loads derived from a widely used power spectral density function. Specifically, the application of the maximum a posteriori estimates of the distribution parameters for the story stiffness is examined, and a surrogate model is developed and applied to facilitate the nonlinear response computation when studying the fragilities of the hysteretic shear frame involved.

Dynamic increase factor for progressive collapse of semi-rigid steel frames with extended endplate connection

  • Huang, Ying;Wu, Yan;Chen, Changhong;Huang, Zhaohui;Yao, Yao
    • Steel and Composite Structures
    • /
    • 제31권6호
    • /
    • pp.617-628
    • /
    • 2019
  • As an extremely destructive accident, progressive collapse is defined as the spread of an initial local failure from element to element, resulting eventually in the collapse of an entire structure or disproportionately large of it. To prevent the occurrence of it and evaluate the ability of structure resisting progressive collapse, the nonlinear static procedure is usually adopted in the whole structure design process, which considered dynamic effect by utilizing Dynamic Increase Factor (DIF). In current researches, the determining of DIF is performed in full-rigid frame, however, the performance of beam-column connection in the majority of existing frame structures is not full-rigid. In this study, based on the component method proposed by EC3 guideline, the expression of extended endplate connection performance is further derived, and the connection performance is taken into consideration when evaluated the performance of structure resisting progressive collapse by applying the revised plastic P-M hinge. The DIF for structures with extended endplate beam-column connection have been determined and compared with the DIF permitted in current GSA guideline, the necessity of considering connection stiffness in determining the DIF have been proved.

Modeling wind load paths and sharing in a wood-frame building

  • He, Jing;Pan, Fang;Cai, C.S.
    • Wind and Structures
    • /
    • 제29권3호
    • /
    • pp.177-194
    • /
    • 2019
  • While establishing adequate load paths in the light-frame wood structures is critical to maintain the overall structural integrity and avoid significant damage under extreme wind events, the understanding of the load paths is limited by the high redundant nature of this building type. The objective of the current study is to evaluate the system effects and investigate the load paths in the wood structures especially the older buildings for a better performance assessment of the existing building stock under high winds, which will provide guidance for building constructions in the future. This is done by developing building models with configurations that are suspicious to induce failure per post damage reconnaissance. The effect of each configuration to the structural integrity is evaluated by the first failure wind speed, amajor indicator beyond the linear to the nonlinear range. A 3D finite-element (FE) building model is adopted as a control case that is modeled using a validated methodology in a highly-detailed fashion where the nonlinearity of connections is explicitly simulated. This model is then altered systematically to analyze the effects of configuration variations in the model such as the gable end sheathing continuity and the gable end truss stiffness, etc. The resolution of the wind loads from scaled wind tunnel tests is also discussed by comparing the effects to wind loads derived from large-scale wind tests.

Development of optimum modeling approach in prediction of wheelflats effects on railway forces

  • Sadeghi, Javad;Khajehdezfuly, Amin;Esmaeili, Morteza;Poorveis, Davood
    • Structural Engineering and Mechanics
    • /
    • 제69권5호
    • /
    • pp.499-509
    • /
    • 2019
  • While the wheel flat is an asymmetrical phenomenon in the railway, majority of researches have used two-dimensional models in the investigation of the effect of wheel flat on the wheel rail forces. This is due to the considerably low computational costs of two dimensional (2D) models although their reliability is questionable. This leaves us with the question of "what is the optimum modeling technique?". It is addressed in this research. For this purpose, two and three dimensional numerical models of railway vehicle/track interaction were developed. The three dimensional (3D) model was validated by comparisons of its results with those obtained from a comprehensive field tests carried out in this research and then, the results obtained from the 2D and 3D models were compared. The results obtained indicate that there are considerable differences between wheel/rail forces obtained from the 2D and 3D models in the conditions of medium to large wheel-flats. On the other hand, it was shown that the results of the 2D models are reliable for particular ranges of vehicle speed, railway track stiffness and wheel-fats lengths and depths. The results were used to draw a diagram, which presents the optimum modeling technique, compromising between the costs and accuracy of the obtained results.

Performance evaluation and hysteretic modeling of low rise reinforced concrete shear walls

  • Nagender, T.;Parulekar, Y.M.;Rao, G. Appa
    • Earthquakes and Structures
    • /
    • 제16권1호
    • /
    • pp.41-54
    • /
    • 2019
  • Reinforced Concrete (RC) shear walls are widely used in Nuclear power plants as effective lateral force resisting elements of the structure and these may experience nonlinear behavior for higher earthquake demand. Short shear walls of aspect ratio less than 1.5 generally experience combined shear flexure interaction. This paper presents the results of the displacement-controlled experiments performed on six RC short shear walls with varying aspect ratios (1, 1.25 and 1.5) for monotonic and reversed quasi-static cyclic loading. Simulation of the shear walls is then carried out by Finite element modeling and also by macro modeling considering the coupled shear and flexure behaviour. The shear response is estimated by softened truss theory using the concrete model given by Vecchio and Collins (1994) with a modification in softening part of the model and flexure response is estimated using moment curvature relationship. The accuracy of modeling is validated by comparing the simulated response with experimental one. Moreover, based on the experimental work a multi-linear hysteretic model is proposed for short shear walls. Finally ultimate load, drift, ductility, stiffness reduction and failure pattern of the shear walls are studied in details and hysteretic energy dissipation along with damage index are evaluated.

국내 무보강 조적조 건물의 지진취약도함수 (Seismic Fragility Function for Unreinforced Masonry Buildings in Korea)

  • 안숙진;박지훈
    • 한국지진공학회논문집
    • /
    • 제25권6호
    • /
    • pp.293-303
    • /
    • 2021
  • Seismic fragility functions for unreinforced masonry buildings were derived based on the incremental dynamic analysis of eight representative inelastic numerical models for application to Korea's earthquake damage estimation system. The effects of panel zones formed between piers and spandrels around openings were taken into account explicitly or implicitly regarding stiffness and inelastic deformation capacity. The site response of ground motion records measured at the rock site was used as input ground motion. Limit states were proposed based on the fraction of structural components that do not meet the required performance from the nonlinear static analysis of each model. In addition to the randomness of ground motion considered in the incremental dynamic analysis explicitly, supplementary standard deviation due to uncertainty that was not reflected in the fragility assessment procedure was added. The proposed seismic fragility functions were verified by applying them to the damage estimation of masonry buildings located around the epicenter of the 2017 Pohang earthquake and comparing the result with actual damage statistics.

An analytical solution to the mapping relationship between bridge structures vertical deformation and rail deformation of high-speed railway

  • Feng, Yulin;Jiang, Lizhong;Zhou, Wangbao;Lai, Zhipeng;Chai, Xilin
    • Steel and Composite Structures
    • /
    • 제33권2호
    • /
    • pp.209-224
    • /
    • 2019
  • This paper describes a study of the mapping relationship between the vertical deformation of bridge structures and rail deformation of high-speed railway, taking the interlayer interactions of the bridge subgrade CRTS II ballastless slab track system (HSRBST) into account. The differential equations and natural boundary conditions of the mapping relationship between the vertical deformation of bridge structures and rail deformation were deduced according to the principle of stationary potential energy. Then an analytical model for such relationship was proposed. Both the analytical method proposed in this paper and the finite element numerical method were used to calculate the rail deformations under three typical deformations of bridge structures and the evolution of rail geometry under these circumstances was analyzed. It was shown that numerical and analytical calculation results are well agreed with each other, demonstrating the effectiveness of the analytical model proposed in this paper. The mapping coefficient between bridge structure deformation and rail deformation showed a nonlinear increase with increasing amplitude of the bridge structure deformation. The rail deformation showed an obvious "following feature"; with the increase of bridge span and fastener stiffness, the curve of rail deformation became gentler, the track irregularity wavelength became longer, and the performance of the rail at following the bridge structure deformation was stronger.

Seismic Behavior Investigation on Blind Bolted CFST Frames with Precast SCWPs

  • Wang, Jingfeng;Shen, Qihan;Li, Beibei
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1666-1683
    • /
    • 2018
  • To explore seismic behavior of blind bolted concrete-filled steel tube (CFST) frames infilled with precast sandwich composite wall panels (SCWPs), a series tests of blind bolted square CFST frames with precast SCWPs under lateral low-cyclic loading were conducted. The influence of the type of wall concrete, wall-to-frame connection and steel brace setting, etc. on the hysteretic curves and failure modes of the type of composite structure was investigated. The seismic behavior of the blind bolted CFST frames with precast SCWPs was evaluated in terms of lateral load-displacement relation curves, strength and stiffness degradation, crack patterns of SCWPs, energy dissipation capacity and ductility. Then, a finite element (FE) analysis modeling using ABAQUS software was developed in considering the nonlinear material properties and complex components interaction. Comparison indicated that the FE analytical results coincided well with the test results. Both the experimental and numerical results indicated that setting the external precast SCWPs could heighten the load carrying capacities and rigidities of the blind bolted CFST frames by using reasonable connectors between frame and SCWPs. These experimental studies and FE analysis would enable improvement in the practical design of the SCWPs in fabricated CFST structure buildings.