• 제목/요약/키워드: Nonlinear spring element

검색결과 123건 처리시간 0.027초

Effect of dynamic absorber on the nonlinear vibration of SFG cylindrical shell

  • Foroutan, Kamran;Ahmadi, Habib
    • Advances in aircraft and spacecraft science
    • /
    • 제7권4호
    • /
    • pp.291-308
    • /
    • 2020
  • In this paper, a numerical method is utilized to study the effect of a new vibration absorber on vibration response of the stiffened functionally graded (SFG) cylindrical shell under a couple of axial and transverse compressions. The material composition of the stiffeners and shell is continuously changed through the thickness. The vibration absorber consists of a mass-spring-damper system which is connected to the ground utilizing a linear local damper. To simplify, the spring element of the vibration absorber is called global potential. The von Kármán strain-displacement kinematic nonlinearity is employed in the constitutive laws of the shell and stiffeners. To consider the stiffeners in the model, the smeared stiffener technique is used. After obtaining the governing equations, the Galerkin method is applied to discretize the nonlinear dynamic equation of system. In order to find the nonlinear vibration responses, the fourth order Runge-Kutta method is utilized. The influence of the stiffeners, the dynamic absorber parameters on the vibration behavior of the SFG cylindrical shell is investigated. Also, the influences of material parameters of the system on the vibration response are examined.

마그네틱 커플링을 장착한 축계의 동적해석(I) (Dynamic analysis of spindle system with magnetic coupling(1))

  • Kim, S.K.;Lee, S.J.;Lee, J.M.
    • 한국정밀공학회지
    • /
    • 제11권4호
    • /
    • pp.99-105
    • /
    • 1994
  • In this study, the transverse and the torsional vibration analyses of a precision dynamic drive system with the magnetic coupling are accomplished. The force of the magnetic coupling is regarded as an equivalent transverse stiffness, which has a nonlinearity as a function of the gap and the eccentricity between a driver and a follower. Such an equivalent stiffness is calculated by and determined by the physical law and the calculated equivalent stiffness is modelled as the truss element. The form of the torque function transmitted through the magnetic coupling is a sinusoidal and such an equivalent angular stiffness, which represents the torque between a driver and a follower, is modelled as a nonlinear spring. The main spindle connected to a follower is assumed to a rigid body. And then finally we have the nonlinear partial differential equation with respect to the angular displacements. Through the procedure mentioned above, we accomplish the results of the torsional vibration analysis in a spindle system with the magnetic coupling.

  • PDF

자동차 현가장치를 위한 에어스프링 보강코드의 최적 성능평가 (Optimum Evaluation of Reinforcement Cord of Air Spring for the Vehicle Suspension System)

  • 김병수;문병영
    • 한국정밀공학회지
    • /
    • 제28권3호
    • /
    • pp.357-362
    • /
    • 2011
  • Air springs are prevalently used as suspension in train. However, air springs are seldom used in automobiles where they improve stability and comfort by enhancing the impact-relief, breaking, and cornering performance. Thus, this study proposed a new method to analyze air springs and obtained some reliable design parameter which can be utilized in vehicle suspension system in contrast to conventional method. Among air spring types of suspension, this study focused on sleeve type of air spring as an analysis model since it has potential for ameliorating the quality of automobiles, specifically in its stability and comfort improvement by decreasing the shock through rubber sleeve. As a methodology, this study used MARC, as a nonlinear finite element analysis program, in order to find out maximum stress and maximum strain depending on reinforcement cord's angle variation in sleeves. The properties were found through uniaxial tension and pure shear test, and they were developed using Ogden Foam which is an input program of MARC. As a result, the internal maximum stresses and deformation according to the changes of cord angle are obtained. Also, the results showed that the Young's modulus becomes smaller, then maximum stresses decrease. It is believed that these studies can be contributed in automobile suspension system.

열차주행안전을 고려한 궤도패드의 최소 수직 스프링계수 결정에 관한 연구 (A study on determining the minimum vertical spring stiffness of track pad considering running safety.)

  • 김정일;양신추;김연태
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.842-847
    • /
    • 2004
  • This study presents the minimum spring stiffness of resilient track pad considering the safety of running train. A nonlinear static 3-D finite element is used for the modeling of railway superstructure, especially for the reflection of nonlinear resistance of rail fastening system. Moreover, ballast is considered as an elastic foundation. As the input load, eccentric wheel and lateral force are used and they are derived from ' Lateral-force/Wheel-load Estimation Equations '. Analysis results are compared with following two values : allowable lateral displacement of rail head (derived from the geometrical derailment evaluation of wheel/rail) and operation standard value (derived from the field test results of track).

  • PDF

Nonlinear creep model based on shear creep test of granite

  • Hu, Bin;Wei, Er-Jian;Li, Jing;Zhu, Xin;Tian, Kun-Yun;Cui, Kai
    • Geomechanics and Engineering
    • /
    • 제27권5호
    • /
    • pp.527-535
    • /
    • 2021
  • The creep characteristics of rock is of great significance for the study of long-term stability of engineering, so it is necessary to carry out indoor creep test and creep model of rock. First of all, in different water-bearing state and different positive pressure conditions, the granite is graded loaded to conduct indoor shear creep test. Through the test, the shear creep characteristics of granite are obtained. According to the test results, the stress-strain isochronous curve is obtained, and then the long-term strength of granite under different conditions is determined. Then, the fractional-order calculus software element is introduced, and it is connected in series with the spring element and the nonlinear viscoplastic body considering the creep acceleration start time to form a nonlinear viscoplastic creep model with fewer elements and fewer parameters. Finally, based on the shear creep test data of granite, using the nonlinear curve fitting of Origin software and Levenberg-Marquardt optimization algorithm, the parameter fitting and comparative analysis of the nonlinear creep model are carried out. The results show that the test data and the model curve have a high degree of fitting, which further explains the rationality and applicability of the established nonlinear visco-elastoplastic creep model. The research in this paper can provide certain reference significance and reference value for the study of nonlinear creep model of rock in the future.

자석 척력의 자전거 쿠션장치 적용 및 비선형성 고찰 (An Observation of the Application of a Magnetic Force to the Bicycle Cushion System and its Nonlinearity)

  • 윤성호
    • 한국기계가공학회지
    • /
    • 제17권1호
    • /
    • pp.42-47
    • /
    • 2018
  • This paper describes the dynamical behavior of the bicycle and its nonlinear effect when magnetic repulsive forces are applied to the bicycle cushion system. A finite-element method was used to obtain its reliabilities by comparing the experimental and numerical values and select the proper magnet sizes. The Equivalent spring stiffness values were evaluated in terms of both linear and nonlinear approximations, where the nonlinear effect was specifically investigated for the ride comfort. The corresponding equations of linear and nonlinear motion were derived for the numerical model with three degrees of freedom. Dynamic behaviors were observed when the bicycle ran over a curvilinear road in the form of a sinusoidal curve. The analysis in this paper for the observed nonlinearity of magnetic repulsive forces will be a useful guide to more accurately predict the cushion design for any vehicle system.

Nonlinear seismic analysis of a super 13-element reinforced concrete beam-column joint model

  • Adom-Asamoah, Mark;Banahene, Jack Osei
    • Earthquakes and Structures
    • /
    • 제11권5호
    • /
    • pp.905-924
    • /
    • 2016
  • Several two-dimensional analytical beam column joint models with varying complexities have been proposed in quantifying joint flexibility during seismic vulnerability assessment of non-ductile reinforced concrete (RC) frames. Notable models are the single component rotational spring element and the super element joint model that can effectively capture the governing inelastic mechanisms under severe ground motions. Even though both models have been extensively calibrated and verified using quasi-static test of joint sub-assemblages, a comparative study of the inelastic seismic responses under nonlinear time history analysis (NTHA) of RC frames has not been thoroughly evaluated. This study employs three hypothetical case study RC frames subjected to increasing ground motion intensities to study their inherent variations. Results indicate that the super element joint model overestimates the transient drift ratio at the first story and becomes highly un-conservative by under-predicting the drift ratios at the roof level when compared to the single-component model and the conventional rigid joint assumption. In addition, between these story levels, a decline in the drift ratios is observed as the story level increased. However, from this limited study, there is no consistent evidence to suggest that care should be taken in selecting either a single or multi component joint model for seismic risk assessment of buildings when a global demand measure such as maximum inter-storey drift is employed in the seismic assessment framework.

강주탑의 비선형거동 특성을 고려한 케이블교량의 지진해석 (Evaluation of Seimic Capacity of Cable-Stayed Bridges Considering Inelastic Behavior of Steel Pylons)

  • 배성한;이경찬;장승필;김익현
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.277-283
    • /
    • 2005
  • Inelastic model of Second Jindo Bridge is investigated to perform nonlinear dynamic analyses with various earthquake ground motions. The modal analysis is performed to obtain dynamic characteristics of the bridge and verify the model. It proves that the model has an appropriate dynamic characteristic and its natural frequency is relatively low. Four ground motions are chosen for time history dynamic analyses; El Centro, Kobe, Taft, and Mexico earthquake. Each ground motion multiplied by specified factors to investigate damages of the structure. The analyses prove that responses of the bridge depend on the duration time and the frequency characteristics of ground motion, not only peak acceleration. Static push-over analysis of steel pylon shows that the dynamic analysis over-estimates the seismic behavior of steel pylon definitely. Nonlinear spring hinge model is suggest to improve the shortage of the inelastic model could not deliberate local buckling damage. According to the time history analysis of nonlinear spring hinge model, it is proved that the inelastic beam element analysis overestimate the seismic capacity of steel pylon unquestionably with a large amount of errors.

  • PDF

압축력이 작용하는 유연보를 이용한 수동 제진기의 준영강성 특성 (Quasi-zero-stiffness Characteristic of a Passive Isolator Using Flexures under Compression Force)

  • 김경홍;안형준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.321-321
    • /
    • 2009
  • This paper presents quasi-zero-stiffness (QZS) characteristic of a passive isolator using flexures under compression force. The passive isolator consists of a positive stiffness element (a vertical coil spring) and a negative stiffness element (flexures under compression force), and their proper combination of the positive and negative stiffness elements can produce both substantial static and zero dynamic stiffness, so called QZS. Firstly, a nonlinear dimensionless expression of a flexure under compression force is derived. A dynamic model of the passive isolator is developed and numerical simulations of its time and frequency response are performed. Then, undesirable nonlinear vibration is quantified using a period doubling bifurcation diagram and a Poincare's map of the isolator under forced excitation. Finally, experiments are performed to validate the QZS characteristic of the passive isolator.

  • PDF

아크스프링의 이산화 모델을 사용한 DMF 성능 시뮬레이션 (Performance Simulation for a Dual Mass Flywheel using Discrete Model of Arcspring)

  • 김태현;김민성;송한림;어순기;김현수
    • 한국자동차공학회논문집
    • /
    • 제12권4호
    • /
    • pp.146-153
    • /
    • 2004
  • This paper presents a discrete analysis approach to investigate the performance of dual mass flywheel (DMF). In the discrete analysis, arcspring installed between the flywheels is modeled as N- discrete elements. Each element consists of mass, spring and nonlinear friction element. LuGre friction model is used to describe nonlinear friction characteristic. Based on the dynamic models of the DMF, clutch, engine, manual transmission and vehicle, a DMF performance simulator is developed using MATLAB Simulink. Simulation results of the engine speed, driveshaft torque and vehicle velocity are compared with test results. It is found that the discrete DMF model describes the vehicle behavior closely, especially during the clutch actuation period.