• Title/Summary/Keyword: Nonlinear spring element

Search Result 123, Processing Time 0.023 seconds

Frontal Crashworthiness Analysis of Vehicle Using simplified Structure Modelling (단순 차체 모델링을 이용한 차량 정면충돌해석)

  • 김홍수;강신유;이인혁;박신희;한동철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.23-30
    • /
    • 1997
  • Modelling and crashworthiness analysis of simplified vehicle structures with beam element and nonlinear spring element to which axial and bending collapse mecha- nisms are applied are carried out. And on the basis of these analyses, two types of full car modelling and crahworthiness analyses with nonlinear spring and beam element are accomplished. The one is the full car model of which 30% of the structures are modelled with nonlinear spring and beam element, and the other 75% of whole structures. And the results are compared with those of full car analysis with shell element.

  • PDF

Finite Element Modeling and Analysis of Nonlinear Dynamic characterisics of Leaf spring (판 스프링의 비선형 동특성 해석)

  • 임홍재;권영일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.842-846
    • /
    • 1996
  • Leaf springs are widely used as a major suspension component in many commercial vehicles, such as buses, trucks, etc. They have a complex dynamic behavior due to the geometric nonlinear and the contact mechanism between the leaves. The interface conditions between the leaves play a significant role in the global behavior of the comfort and ride of the vehicle system. The paper concentrates on modeling leaf springs and contact frictions between the leaves using a nonlinear finite element approach. A nonlinear load-displacement hysteresis curve for the leaf spring is simulated and its results are compared with test results.

  • PDF

Analysis of Dynamic Behavior of Floating Slab Track Using a Nonlinear Viscoelastic Spring Model (비선형 점탄성 스프링 모델을 이용한 플로팅 슬래브 궤도의 동적 거동 해석)

  • Jang, Seung Yup;Park, Jin Chul;Hwang, Sung Ho;Kim, Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1078-1088
    • /
    • 2012
  • Recently, the vibration and structure-borne noise induced by passing trains are of great concerns, and the floating slab track is highlighted as one of most efficient alternatives to reduce the railway vibration. However, due to the non-linearity and viscosity of rubber spring used in the floating slab track, its dynamic behavior is very complex. In this study, therefore, to simulate the dynamic behavior of floating slab track with a better accuracy, a nonlinear viscoelastic rubber spring model that can be incorporated in commercial finite element analysis codes has been proposed. This model is composed of a combination of elastic spring element, friction element and viscous element, and termed the "generalized friction viscoelastic model(GFVM)". Also, in this study, the method to determine the model parameters of GFVM based on Berg's 5-parameter model was presented. The results of the finite element analysis with this rubber spring model exhibit very good correlation with the test results of a laboratory mock-up test, and the feasibility of GFVM has been verified.

Winkler spring behavior in FE analyses of dowel action in statically loaded RC cracks

  • Figueira, Diogo;Sousa, Carlos;Neves, Afonso Serra
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.593-605
    • /
    • 2018
  • A nonlinear finite element modeling approach is developed to assess the behavior of a dowel bar embedded on a single concrete block substrate, subjected to monotonic loading. In this approach, a discrete representation of the steel reinforcing bar is considered, using beam finite elements with nonlinear material behavior. The bar is connected to the concrete embedment through nonlinear Winkler spring elements. This modeling approach can only be used if a new constitutive model is developed for the spring elements, to simulate the deformability and strength of the concrete substrate. To define this constitutive model, an extensive literature review was conducted, as well as 3 experimental tests, in order to select the experimental data which can be used in the calibration of the model. Based on this data, an empirical model was established to predict the global dowel response, for a wide range of bar diameters and concrete strengths. This empirical model provided the information needed for calibration of the nonlinear Winkler spring model, valid for dowel displacements up to 4 mm. This new constitutive model is composed by 5 stages, in order to reproduce the concrete substrate response.

Numerical study on the moment capacity of zed-section purlins under uplift loading

  • Zhu, Jue;Chen, Jian-Kang;Ren, Chong
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.147-161
    • /
    • 2014
  • In this paper a nonlinear finite element analysis model is established for cold-formed steel zed-section purlins subjected to uplift loading. In the model, the lateral and rotational restraints provided by the sheeting to the purlin are simplified as a lateral rigid restraint imposed at the upper flange-web junction and a rotational spring restraint applied at the mid of the upper flange where the sheeting is fixed. The analyses are performed by considering both geometrical and material nonlinearities. The influences of the rotational spring stiffness and initial geometrical imperfections on the uplift loading capacity of the purlin are investigated numerically. It is found that the rotational spring stiffness has significant influence on the purlin performance. However, the influence of the initial geometric imperfections on the purlin performance is found only in purlins of medium or long length with no or low rotational spring stiffness.

Rollover Analysis of a Bus using Beam Element and Nonlinear Spring Characteristics (보 요소와 비선형 스프링 특성을 이용한 버스 전복 해석)

  • Park, Su-Jin;Yoo, Wan-Suk;Kwon, Yuen-Ju;Kim, Jin-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.56-63
    • /
    • 2007
  • In case of bus rollover, the body structure of the bus should be designed to ensure the survival space for passengers. So, this study focuses on evaluating rollover strength through a computer simulation using the commercial code, LS-DYNA3D at the initial stage of vehicle development. For this study, section structure was modeled using a simple beam element, and impact boundary conditions required by ECE(Economic Commission for Europe) regulation No.66 were applied. In order to confirm the validity of the beam element bus model, the results compared with the test results and shell element bus model. The analysis errors from beam element bus model are due to the difference in strain energy of joint area between beam and shell model. In this study, a method for the joint modeling was suggested by using nonlinear springs to which the collapse mechanisms were applied.

A Study on the Nonlinear Finite Element Analysis of Prestressed Concrete Containment Vessel (프리스트레스 콘크리트 원전 격납건물의 비선형 유한요소해석에 관한 연구)

  • Lee Hong-Pyo;Choun Young-Sun;Song Young-Chul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.639-646
    • /
    • 2006
  • A nonlinear finite element analysis is carried out to predict the ultimate internal pressure and failure mechanism of a 1/4 scale prestressed concrete containment vessel(PCCV) model using the commercial code ABAQUS. Therefore, this paper is mainly focused to compare the influence of concrete material model, tension stiffening parameter, uplift phenomenon and basemat. From the analysis results, nonlinear behavior of the PCCV showed a substantially different aspects in accordance with the nonlinear material model for the concrete as well as tension stiffening parameter. The boundary conditions beneath the basemat are considered to be a fixed condition and a nonlinear spring element to compare the influence of the uplift. The finite element analysis is considered with and without a basemat to find out the influence of the basemant itself. From the analysis results, the nonlinear behavior of the PCCV is entirely similar for the two cases.

  • PDF

Nonlinear Analytical Model of Unreinforced Masonry Wall using Fiber and Shear Spring Elements (파이버 및 전단 스프링요소를 이용한 비보강 조적벽체의 비선형 해석모델)

  • Hong, Jeong-Mo;Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.283-291
    • /
    • 2018
  • This study intends to develop an analytical model of unreinforced masonry(URM) walls for the nonlinear static analysis which has been generally used to evaluate the seismic performance of a building employing URM walls as seismic force-resisting members. The developed model consists of fiber elements used to capture the flexural behavior of an URM wall and a shear spring element implemented to predict its shear response. This paper first explains the configuration of the proposed model and describes how to determine the modeling parameters of fiber and shear spring elements based on the stress-strain curves obtained from existing experimental results of masonry prisms. The proposed model is then verified throughout the comparison of its nonlinear static analysis results with the experimental results of URM walls carried out by other researchers. The proposed model well captures the maximum strength, the initial stiffness, and their resulting load - displacement curves of the URM walls with reasonable resolution. Also, it is demonstrated that the analysis model is capable of predicting the failure modes of the URM walls.

Finite Element Analysis and Evaluation of Rubber Spring for Railway Vehicle (철도차량용 고무스프링 특성해석 및 평가)

  • Woo, Chang-Su;Kim, Wan-Doo;Choi, Byung-Ik;Park, Hyun-Sung;Kim, Kyung-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.773-778
    • /
    • 2009
  • Chevron rubber springs are used in primary suspensions for rail vehicle. Chevron rubber spring have function which reduce vibration and noise, support load carried in operation of rail vehicle. Prediction and evaluation of characteristics are very important in design procedure to assure the safety and reliability of the rubber spring. The computer simulation using the nonlinear finite element analysis program executed to predict and evaluate the load capacity and stiffness for the chevron spring. The non-linear properties of rubber which are described as strain energy functions are important parameters. These are determined by material tests which are uniaxial tension, equi-biaxial tension and shear test. The appropriate shape and material properties are proposed to adjust the required characteristics of rubber springs in the three modes of flexibility.

Prediction and Evaluation of Stiffness of Chevron Spring for Rail Vehicle (철도차량용 세브론 스프링의 강성 예측 및 평가)

  • 김완두;김완수;우창수;정승일;김석원;김영구
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.4
    • /
    • pp.123-130
    • /
    • 2001
  • A chevron rubber spring is used in primary suspension system for rail vehicle. The chevron spring support the load carried and reduces vibration and noise in operation of rail vehicle. The computer simulation using the nonlinear finite element analysis program MARC executed to predict and evaluate the load capacity and stiffness for the chevron spring. The appropriate shape and the material properties are proposed to adjust the required characteristics of chevron spring in the three modes of flexibility. Also, several samples of chevron spring are manufactured and experimented. It is shown that the predicted values agree well the results obtained from experiment.

  • PDF