• Title/Summary/Keyword: Nonlinear phase

Search Result 1,078, Processing Time 0.034 seconds

Dispersion and Nonlinear Properties of Elliptical Air Hole Photonic Crystal Fiber

  • Rao, MP Srinivasa;Singh, Vivek
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.525-531
    • /
    • 2018
  • The effect of eccentricity on dispersion and nonlinear properties of a photonic crystal fiber having elliptical air holes is investigated using a fully vectorial effective index method. It is found that the effective refractive index increases with increase of eccentricity. The dependence of dispersion and nonlinear properties of the PCF on the eccentricity of the air hole is investigated. It is revealed that eccentricity of the air hole affects the zero dispersion wavelength. Further, the nonlinear properties such as mode field area, nonlinear coefficient and self phase modulation of the Photonic crystal fibers are analyzed. The mode field area increases and the nonlinear coefficient decreases with increase in eccentricity. The variation of the self phase modulation with elliptical air hole is also discussed.

Output Feedback Stabilization of Non-Minimum Phase Nonlinear Systems

  • Jo, Nam-H.;Son, Young-I.;Shim, Hyung-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.60.1-60
    • /
    • 2002
  • . an output feedback stabilizing controller for non-minimum phase nonlinear systems . Assumption 1 : the Jacobi linearization of the given nonlinear linear system is controllable . Assumption 2: an appropriate transformation which transforms the zero dynamics into a special form . Assumption 3: the system satisfies the observability rank condition . Augmentation of systems by augmented by a chain of integrators

  • PDF

Nonlinear Control of Three-phase Split-Capacitor Inverters under Unbalanced and Nonlinear Load Conditions

  • Nguyen, Qui Tu Vo;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.52-53
    • /
    • 2012
  • This paper presents a new control scheme for a three-phase split DC-link capacitor inverter as an AC power supplies. The proposed control method can maintain the balanced sinusoidal output voltage under unbalanced and nonlinear load conditions. The validity of the control method has been verified by simulation results.

  • PDF

Advanced Control of Three-Phase Four-Wire Inverters using Feedback Linearization under Unbalanced and Nonlinear Load Conditions (불평형 비선형 부하시 궤환선형화 기법을 이용한 3상 4선식 인버터의 제어 성능 개선)

  • Vo, Nguyen Qui Tu;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.333-341
    • /
    • 2013
  • In this paper, a feedback linearization control is proposed to regulate the output voltages of a three-phase four-wire inverter under the unbalanced and nonlinear load conditions. First, the nonlinear model of system including the output LC filters is derived in the d-q-0 synchronous reference frame. Then, the system is linearized by the multi-input multi-output feedback linearization. The tracking controllers for d-q-0-components of three-phase line-to-neutral load voltages are designed by linear control theory. The experimental results have shown that the proposed control method gives the good performance in response to the load conditions.

Asymptotic Output Tracking of Non-minimum Phase Nonlinear Systems through Learning Based Inversion (학습제어를 이용한 비최소 위상 비선형 시스템의 점근적 추종)

  • Kim, Nam Guk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.32-42
    • /
    • 2022
  • Asymptotic tracking of a non-minimum phase nonlinear system has been a popular topic in control theory and application. In this paper, we propose a new control scheme to achieve asymptotic output tracking in anon-minimum phase nonlinear system for periodic trajectories through an iterative learning control with the stable inversion. The proposed design method is robust to parameter uncertainties and periodic external disturbances since it is based on iterative learning. The performance of the proposed algorithm was demonstrated through the simulation results using a typical non-minimum nonlinear system of an inverted pendulum on a cart.

Analysis of Reduction Effect of Three Harmonic Currents by Zigzag Wiring of Single Phase Transformer (단상 변압기 지그재그 결선에 의한 3고조파 전류 저감 효과 분석)

  • Kim, Jong-Gyeum;Kim, Ji-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.3
    • /
    • pp.99-104
    • /
    • 2017
  • The three-phase four-wire power distribution system can be used to supply power to single-phase and three-phase loads at the same time. There are linear loads and nonlinear loads as single-phase loads connected to each phase. The nonlinear load generates a harmonic current during the power energy conversion process. In particular, the single-phase nonlinear load has a higher proportion of generation of the third harmonic current than the harmonics of the other orders. In a three-phase four-wire system, the third harmonic current flows through the neutral wire to the power supply side, affecting the power supply side and the line. Furthermore, the magnitude of the current flowing in the neutral line can be higher than the current flowing in the individual phase. If the neutral current is higher than the phase current, the breaker may be blocked. Therefore, it is necessary to reduce the amount of current flowing in the neutral line by harmonics. There is a method of zigzag connecting a single phase transformer by a method of reducing 3 harmonic current. In this study, the method of reducing the magnitude of the three harmonic currents flowing through the zigzag wire by comparing the polarity and the negative polarity characteristics of the single phase transformer was compared through measurement and simulation.

Nonlinear Response and Phase Angle Characteristics of Earthquake Ground Motions (지진동의 위상 특성과 비선형 응답)

  • Woo, Woon-Taek;Park, Tae-Won;Jung, Ran
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.497-504
    • /
    • 2002
  • The characteristics of harmonic phase angles and phase angle differences contained in earthquake ground motions such as El Centre 1940 NS, Taft1 1952 NS, Hachinohe 1968 NS and Mexico 1985 are figured, which have been mostly overlooked in contrast with the importance placed on harmonic amplitudes. Recently, performance based design method is used for seismic design and seismic retrofitting, which needs nonlinear response analysis, there must be earthquake ground accelerations which contain the phase angle and the phase angle difference characteristics of the zone considered to be constructed building structures. To make clear the importance of phase angle differences, 4-earthquake ground motions are normalized by 200 gal and nonlinear response characteristics of normalized 4-earthquake ground motions are compared.

  • PDF

Flow Pattern Identification of Vertical Upward Two-Phase Flow Using the Attractor-Density-Map Analysis of the Void Fraction Signal in the Nonlinear Phase Space (비선형 위상공간에서의 기포 분율 신호의 끌개밀도분식을 이용한 수직 상향 이상유동의 유동패턴분류)

  • Kim, Nam-Seok;Lee, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1398-1406
    • /
    • 2004
  • The nonlinear signals from an impedance meter for the area average void fraction in two-phase flow have been analyzed to construct a phase space trajectory. The pseudo phase space was constructed with the time delay and proper dimensions. The time delay and the embedding dimension were chosen by the average mutual information and by the false nearest neighborhood, respectively. The attractor-density-map of projected states was used to produce the two dimensional probability distribution functions (2D-PDF). Since the developed 2D-PDF showed clear distinction of the flow patterns, the flow regime identification was made with three rules and with the 2D-PDF. Also, the transition criteria of Mishima-Ishii agree well with the present results.

Information Authentication of Three-Dimensional Photon Counting Double Random Phase Encryption Using Nonlinear Maximum Average Correlation Height Filter

  • Jang, Jae-Young;Inoue, Kotaro;Lee, Min-Chul;Cho, Myungjin
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.228-233
    • /
    • 2016
  • In this paper, we propose a nonlinear maximum average correlation height (MACH) filter for information authentication of photon counting double random phase encryption (DRPE). To enhance the security of DRPE, photon counting imaging can be applied because of its sparseness. However, under severely photon-starved conditions, information authentication of DRPE may not be implemented successfully. To visualize the photon counting DRPE, a three-dimensional imaging technique such as integral imaging can be used. In addition, a nonlinear MACH filter can be utilized for helping the information authentication. Therefore, in this paper, we use integral imaging and nonlinear MACH filter to implement the information authentication of photon counting DRPE. To verify our method, we implement optical experiments and computer simulation.

Application of nonlinear control via output redefinition to missile autopilot (출력재정의를 통한 비선형제어 기법의 미사일 오토파일롯 응용)

  • 류진훈;탁민제
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1496-1499
    • /
    • 1996
  • A nonlinear tracking control technique developed for the control of nonlinear systems has been applied to the autopilot design of missile system. The difficulties in the application of inversion based control methods such as input-output feedback linearization and sliding mode control due to nonminimum phase characteristics are discussed. To avoid the stability problem associated with unstable zero dynamics, the input-output feedback linearization is applied with output-redefinition method to normal acceleration control. The output-redefinition method gives an indirect way to apply the nonlinear controls to nonminimum phase plants by redefining the plant output such that the tracking control of the modified output ensures the asymptotic tracking of the original output. The numerical simulation shows satisfactory results both for nominal and for slightly perturbed missile systems adopting the sliding mode control technique. However, the robustness problem in this method is briefly investigated and verified with the simulation.

  • PDF