• Title/Summary/Keyword: Nonlinear phase

Search Result 1,078, Processing Time 0.059 seconds

Phase Error Reduction for Multi-frequency Fringe Projection Profilometry Using Adaptive Compensation

  • Cho, Choon Sik;Han, Junghee
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.332-339
    • /
    • 2018
  • A new multi-frequency fringe projection method is proposed to reduce the nonlinear phase error in 3-D shape measurements using an adaptive compensation method. The phase error of the traditional fringe projection technique originates from various sources such as lens distortion, the nonlinear imaging system and a nonsinusoidal fringe pattern that can be very difficult to model. Inherent possibility of phase error appearing hinders one from accurate 3-D reconstruction. In this work, an adaptive compensation algorithm is introduced to reduce adaptively the phase error resulting from the fringe projection profilometry. Three different frequencies are used for generating the gratings of projector and conveyed to the four-step phase-shifting procedure to measure the objects of very discontinuous surfaces. The 3-D shape results show that this proposed technique succeeds in reconstructing the 3-D shape of any type of objects.

Comparative Analysis of Voltage Unbalance Factor on the use of Linear and Non-linear loads in Three-phase Four-wire Low Voltage Distribution Line (3상 4선식 저압 배전선로에서 선형 및 비선형 부하의 사용시 전압 불평형률 비교 분석)

  • Kim, Jong-Gyeum;Kim, Ji-Myeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.587-592
    • /
    • 2017
  • In the three-phase four-wire low-voltage power distribution equipment, single-phase and three-phase load have been used mainly mixed. Also linear and nonlinear loads have been used together in the same conditions. In a three-phase four-wire distribution line, the current distribution of three-phase linear load is almost constant in each phase during driving or stopping, but the single-phase load is different from each other for each phase in accordance with the operation and stop. So that the voltage unbalance is caused by the current difference of each phase. In the three-phase four-wire distribution system, non-linear load is used with linear load. The presence of single-phase nonlinear loads can produce an increase in harmonic currents in three-phase and neutral line. It can also cause voltage unbalance. In the present study, we analyzed for the voltage unbalance fluctuations by the operation pattern of the single and three-phase linear and non-linear load in three-phase four-wire low voltage distribution system.

Copper Loss and Torque Ripple Minimization in Switched Reluctance Motors Considering Nonlinear and Magnetic Saturation Effects

  • Dowlatshahi, Milad;Saghaiannejad, Sayed Morteza;Ahn, Jin-Woo;Moallem, Mehdi
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.351-361
    • /
    • 2014
  • The discrete torque generation mechanism and inherently nonlinear magnetic characterization of switched reluctance motors lead to unacceptable torque ripples and limit the application of these motors. In this study, a phase current profiling technique and torque sharing function are proposed in consideration of magnetic saturation effects and by minimizing power loss in the commutation area between the adjacent phases. Constant torque trajectories are considered in incoming and outgoing phase current planes based on nonlinear T-i-theta curves obtained from experimental measurements. Optimum points on constant torque trajectories are selected by improving drive efficiency and minimizing copper loss in each rotor position. A novel analytic invertible function is introduced to express phase torque based on rotor position and its corresponding phase current. The optimization problem is solved by the proposed torque function, and optimum torque sharing functions are derived. A modification method is also introduced to enhance the torque ripple-free region based on simple logic rules. Compared with conventional torque sharing functions, the resultant reference current from the proposed method has less peak and effective values and exhibits lower copper loss. Experimental and simulation results from a four-phase 4 KW 8/6 SRM validate the effectiveness of the proposed method.

Two-Phase Approach to Solve Multiobjective Nonlinear Programming Problem (다목적 비선형계획문제의 해결을 위한 2단계 접근법)

  • 이상완;남현우
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.1
    • /
    • pp.122-128
    • /
    • 1997
  • A new approach, called "two-phase approach", has been proposed In this study. Using this approach to solve MONLP(multiobjective nonlinear programming problem), the solution process is divied into two phase. In the first phase, the min-operator is used to aggregate the membership degree of fuzzy goals and constraints. In the second phase, the $\gamma$-operator is used to test and find an efficient solution in the sense of nondominated. It has been shown that no matter what the solution of the problem is unique or not, an efficient solution can be always obtained at the second phase. The proposed approach can be applied to industrial safety problem with multiobjective problems. On the basis of proposed approach, an illustrative numerical example is presented.presented.

  • PDF

Phase Separation and Precipitation Characteristics in ZnS doped Borosilicate Glasses (ZnS 미립자 분산 붕규산엽계 유리에서의 분상 및 미립자 석출 특성)

  • 이승환;류봉기
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1337-1342
    • /
    • 1998
  • To investigate an effect of phase separation on precipitation characteristics of ZnS microcrystals in ma-trix glass ZnS doped borosilicate glasses for nonlinear optical applications were prepared by melting and pre-cipitation process. ZnS dopant contributed to phase separation promotion which increased the phase separa-tion of the matrix glass within immiscibility region. It was also found that ZnS as phase separation promoter showed a similar contribution for some selected glass compositions in miscibility region. The precipitation of ZnS microcrystals occurred in thephase separable glass compoitions. The radius of ZnS microcrystals in-creased with increasing the heat treatment temperature and Na2O contents of matrix glass composition. The ZnS particle sizes estimated by effective mass approximation ranged from about 30 to 80${\AA}$ It was suf-ficiently small to show quantum confinement effect.

  • PDF

Cross Phase Modulation Effects on 120 Gbps WDM Transmission Systems with Mid-Span Spectral Inversion for Compensation of Distorted Optical Pulse (광 펄스 왜곡의 보상을 위해 Mid-Span Spectral Inversion 기법을 채택한 120 Gbps WDM 시스템에서 채널간 상호 위상 변조 현상의 영향)

  • 이성렬;권순녀;이윤현
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.7
    • /
    • pp.741-749
    • /
    • 2003
  • In this paper, we investigated the degree of compensation for WDM channel signal distortion due to chromatic dispersion, self phase modulation(SPM) and cross phase modulation(XPM). The considered system is 120 Gbps (3${\times}$40 Gbps) intensity modulation direct detection(IM/DD) WDM transmission system with path-averaged intensity approximation(PAIA) mid-span spectral inversion(MSSI) as compensation method. This system have highly nonlinear dispersion shifted fiber(HNL-DSF) as nonlinear medium in optical phase conjugator(OPC). We use 1 dB eye opening peralty(EOP) in order to evaluate the characteristics of compensation for distorted WDM channels. We confirmed that improvement of transmission distance and performance is achieved by MSSI method to distorted long-haul IM/DD WDM channels due to chromatic dispersion, SPM and XPM. And in the aspect of compensation for distorted pulse due to XPM, the MSSI method is effective to IM/DD WDM transmission system with high fiber dispersion coefficient.

A Study of the Analysis of Characteristics of Nonlinear Dynamic System on Blood-Flow of Peripheral Blood-Vessel between Diabetic Patients and Control Subjects (당뇨병환자와 정상인의 말초혈관혈류의 비선형적 운동계 분석에 대한 연구)

  • Kim, D.H.;Choi, J.Y.;Yi, S.H.;Go, H.W.;Nam, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.363-367
    • /
    • 1996
  • In general, the physiological systems have shown nonlinear complex phenomena. This study analyzes nonlinear characteristics of the flow of peripheral blood vessel dynamics in physiological systems using chaos theory. We performed this study by means of several quantity methods and power spectrum. The quantity methods are a phase space reconstruction and a poincare's map. And the power spectrum method is a conventional linear analysis. Experimental data have been acquired from examining 10 diabetic patients, and 10 control subjects in initial stable state. In acquisition experminetal data, we anlysized the differences of nonlinear characteristics between diabetic group and control group. The results of quality analysis methods showed the flow of peripheral blood vessel had the nonlinear and chaotic characteristics, screening a strange attractor on reconstructed phase space. In conclusion, the flow dynamics of peripheral blood vessel had a chaotic behavior of nonlinear dynamic systems, dynamic system, and differences of characteristic of nonlinear dynamic system.

  • PDF

Chaotic Behavior in a Dynamic Love Model with Different External Forces

  • Bae, Youngchul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.283-288
    • /
    • 2015
  • In this paper, we propose a dynamic mathematical model of love involving various external forces, in order to analyze the chaotic phenomena in a love model based on Romeo and Juliet. In addition, we investigate the nonlinear phenomena in a love model with external forces using time series and phase portraits. In order to describe nonlinear phenomena precisely using time series and phase portraits, we vary the type of external force, using models such as a sine wave, chopping wave, and square wave. We also apply various different parameters in the Romeo and Juliet model to acquire chaotic dynamics.

A High Efficiency Direct Instantaneous Torque Control of SRM based on the Nonlinear Model (비선형 모델기반 SRM의 고효율 직접 순시토크 제어)

  • An, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1047-1054
    • /
    • 2007
  • This paper presents a high efficiency direct instantaneous torque control (DITC) of Switched Reluctance Motor(SRM) based on the nonlinear model. The DITC method can reduce the high inherent torque ripple of SRM drive system, but drive efficiency is somewhat low due to the high current and switching loss during commutations. In order to reduce a torque ripple, a fast torque reference trajectory is selected at every instantaneous rotor position. Based on the nonlinear model of SRM, the developing torque by one phase is fixed and the other phase is regulated for minimum switchings of phase switch and variation of torque. The switching during commutation can be reduced and fast commutation can be obtained in the proposed method. As a result, drive efficiency could be improved as well as torque ripple reduction. The validity of proposed method is verified by computer simulations and comparative experiments.