• Title/Summary/Keyword: Nonlinear guidance

Search Result 128, Processing Time 0.024 seconds

Nonlinear resonance of porous functionally graded nanoshells with geometrical imperfection

  • Wu-Bin Shan;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.355-368
    • /
    • 2023
  • Employing the non-local strain gradient theory (NSGT), this paper investigates the nonlinear resonance characteristics of functionally graded material (FGM) nanoshells with initial geometric imperfection for the first time. The effective material properties of the porous FGM nanoshells with even distribution of porosities are estimated by a modified power-law model. With the guidance of Love's thin shell theory and considering initial geometric imperfection, the strain equations of the shells are obtained. In order to characterize the small-scale effect of the nanoshells, the nonlocal parameter and strain gradient parameter are introduced. Subsequently, the Euler-Lagrange principle was used to derive the motion equations. Considering three boundary conditions, the Galerkin principle combined with the modified Lindstedt Poincare (MLP) method are employed to discretize and solve the motion equations. Finally, the effects of initial geometric imperfection, functional gradient index, strain gradient parameters, non-local parameters and porosity volume fraction on the nonlinear resonance of the porous FGM nanoshells are examined.

Autonomous Aerobatic Flight for Fixed Wing Aircraft (고정익 항공기의 자율 곡예비행)

  • Park, Sang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1217-1224
    • /
    • 2009
  • A simple and effective guidance and control scheme that enables autonomous three-dimensional path-following for a fixed wing aircraft is presented. The method utilizes the nonlinear path-following guidance law for the outer loop that creates steering acceleration command based on the desired flight path and the current position and velocity of the vehicle. The scheme considers the gravity in the guidance level, where it is subtracted from the acceleration command to form the specific force acceleration command which the aircraft is better suited to follow than the total acceleration command in the inner-loop. A roll attitude control scheme is also presented that enables inverted flight or sideslip maneuvers such as slow roll and knife-edge. A series of aerobatic maneuvers are demonstrated through simulations to show the potential of the proposed scheme.

Analysis on Optimality of Proportional Navigation With Time-Varying Velocity (속력변화를 고려한 비례항법유도의 최적성 해석)

  • Jeon, In-Soo;Lee, Jin-Ik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.998-1001
    • /
    • 2009
  • This paper shows that the conventional proportional navigation guidance(PNG) law with a constant navigation gain is an optimal solution strictly also when the velocity is varying during engagement. Especially, PNG with navigation constant, 3, is an optimal solution minimizing a closing velocity weighted induced-drag. While most of previous studies on optimality of PNG were relied on the linear formulation and the constant speed assumption, this study presents more general analysis results on optimality of PNG based on the nonlinear formulation and the time-varying velocity assumption.

Optimal Soft Landing Guidance and Attitude Control for Reusable Launch Vehicles (재사용 발사체를 위한 최적 연착륙 유도 및 자세 제어 연구)

  • Jeon, Ho-Young;Cho, Jun-Hyon;Kim, Jong-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.4
    • /
    • pp.251-257
    • /
    • 2022
  • We formulated the convex optimization based minimum energy soft landing problem for reusable launch vehicles, and obtained the minimum time trajectory via the bisection search. In order to implement the the optimal guidance command and complete the flight control architectures on the soft landing stage, we designed the classical attitude control loops, and formulated and solved the optimal actuator allocation problem. The obtained soft landing guidance performance was analyzed via nonlinear 6-DOF simulation.

Reference Trajectory Analysis and Trajectory Control by Bank Angle for Re-Entry Vehicle

  • Cho, Kyeum-Rae;Lee, Dae-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.745-756
    • /
    • 2002
  • The re-entry problem consists of guidance design and trajectory control. This paper summarizes the detailed relationships between the velocity, drag acceleration and altitude in determining reference trajectories. The computational issues are also addressed, and the performance of the proposed simple nonlinear control of a bank angle for the longitudinal/ lateral trajectory is demonstrated. In particular, the fixed bank angle methods that can reduce the drag acceleration errors at low-speeds are proposed. The importance of bank reversals with respect to the azimuth errors Is also elucidated.

Error analysis of a missile system with command to line-of-sight guidance law (시선지령식 유도방법을 사용한 유도무기시스템의 오차해석)

  • 이규택;이연석;이장규;장상근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.389-394
    • /
    • 1991
  • The surface-to-air missile system using Command to Line-Of-Sight (CLOS) guidance law is represented by complex nonlinear differential equations with 6 degree-of-freedom. This paper presents the characterictics of missile system and the effect of various error sources by Monte-Carlo simulation method. By simulation the part of playing a main role in the surface-to-air missile system is radar. Therefore for the performance of missile system the development of the technique reducing the error of radar is required. And the effect of accelerometer error is a few large, too. But, because accelerometer costs cheap this problem is solved easily. And the main error source of missile system data is the thrust, which affects directly to acceleration. The result is the important information about designing and fabricating missile system. And this makes the missile system best because of sharing elaborate and expense effectively.

  • PDF

Evolutionary Nonlinear Regression Based Compensation Technique for Short-range Prediction of Wind Speed using Automatic Weather Station (AWS 지점별 기상데이타를 이용한 진화적 회귀분석 기반의 단기 풍속 예보 보정 기법)

  • Hyeon, Byeongyong;Lee, Yonghee;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.107-112
    • /
    • 2015
  • This paper introduces an evolutionary nonlinear regression based compensation technique for the short-range prediction of wind speed using AWS(Automatic Weather Station) data. Development of an efficient MOS(Model Output Statistics) is necessary to correct systematic errors of the model, but a linear regression based MOS is hard to manage an irregular nature of weather prediction. In order to solve the problem, a nonlinear and symbolic regression method using GP(Genetic Programming) is suggested for a development of MOS wind forecast guidance. Also FCM(Fuzzy C-Means) clustering is adopted to mitigate bias of wind speed data. The purpose of this study is to evaluate the accuracy of the estimation by a GP based nonlinear MOS for 3 days prediction of wind speed in South Korean regions. This method is then compared to the UM model and has shown superior results. Data for 2007-2009, 2011 is used for training, and 2012 is used for testing.

Guidance Law to Reach Circular Target Area With Grazing Angle Constraint (지향각 구속조건을 갖는 원형 목표구역 도달 유도 법칙)

  • Jeon, In-Soo;Lee, Jin-Ik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.884-890
    • /
    • 2008
  • A new guidance law to reach circular target area with grazing angle constraint is proposed as one of midcourse guidance laws of unmanned air vehicles. The purpose of the law is to control the grazing angle between the velocity vector of the vehicle and the line of sight to the aiming point, the center of the circular target area, when the vehicle passes any point on the circle. The optimal solution is derived based on the optimal control theory minimizing a range weighted control energy subject to the nonlinear dynamic equations of the vehicle approaching to the circular target area with grazing angle constraint. The major properties including a convergence of the solution are examined and the performance of the law applied to some typical scenarios is shown by the numerical simulation.

Trajectory Generation, Guidance, and Navigation for Terrain Following of Unmanned Combat Aerial Vehicles (무인전투기 근접 지형추종을 위한 궤적생성 및 유도 항법)

  • Oh, Gyeong-Taek;Seo, Joong-Bo;Kim, Hyoung-Seok;Kim, Youdan;Kim, Byungsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.979-987
    • /
    • 2012
  • This paper implements and integrates algorithms for terrain following of UCAVs (Unmanned Combat Aerial Vehicles): trajectory generation, guidance, and navigation. Terrain following is very important for UCAVs because they perform very dangerous missions such as Suppression of Enemy Air Defences while the terrain following can improve the survivability of UCAVs against from the air defence systems of the enemy. To deal with the GPS jamming, terrain referenced navigation based on nonlinear filter is chosen. For the trajectory generation, Voronoi diagram is adopted to generate horizontal plane path to avoid the air defense system. Cubic spline method is used to generate vertical plane path to prevent collisions with ground while flying sufficiently close to surface. Follow-the-Carrot and pure pursuit tracking methods, which are look-ahead point based guidance algorithms, are applied for the guidance. Numerical simulation is performed to verify the performance of the integrated terrain following algorithm.

Composite Guidance Law for Impact Angle Control of Passive Homing Missiles (수동 호밍 유도탄의 충돌각 제어를 위한 복합 유도법칙)

  • Park, Bong-Gyun;Kim, Tae-Hun;Tahk, Min-Jea;Kim, Youn-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.20-28
    • /
    • 2014
  • In this paper, based on the characteristics of proportional navigation, a composite guidance law is proposed for impact angle control of passive homing missiles maintaining the lock-on condition of the seeker. The proposed law is composed of two guidance commands: the first command is to keep the look angle constant after converging to the specific look angle of the seeker, and the second is to impact the target with terminal angle constraint and is implemented after satisfying the specific line of sight(LOS) angle. Because the proposed law considers the seeker's filed-of-view(FOV) and acceleration limits simultaneously and requires neither time-to-go estimation nor relative range information, it can be easily applied to passive homing missiles. The performance and characteristics of the proposed law are investigated through nonlinear simulations with various engagement conditions.