• 제목/요약/키워드: Nonlinear flexural analysis

검색결과 271건 처리시간 0.031초

탄소섬유시트로 보강된 RC보의 해석 및 설계 프로그램 개발 (Analysis and Design Program of RC Beams Strengthened with Carbon Fiber Sheets)

  • 김성도;김성수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.1163-1167
    • /
    • 2004
  • This study attempts to analyze the flexural behavior of RC beams strengthened with tiber sheets according to the KCI strength method and nonlinear flexural analysis. Also based on these methods, analysis and design programs are developed by the visual basic programming language. Programs include the influence of concrete tensile capacity and failure strain of fiber sheets.

  • PDF

Flexural behaviour of reinforced concrete beams with silica fume and processed quarry fines

  • Priya, T. Shanmuga;Senthilkumar, R.
    • Advances in concrete construction
    • /
    • 제10권2호
    • /
    • pp.161-169
    • /
    • 2020
  • This paper studies the influence of silica fume and Processed Quarry Fines (PQF) on the flexural behaviour of the reinforced concrete beams by experimental as well as numerical studies. The study has been shown that the incorporation of PQF can significantly increase the stiffness and the flexural strength of reinforced HPC beams. Also, the ultimate strength of specimens prepared with the 10% silica fume and 100% PQF are higher compared to conventional reinforced concrete specimen. Numerical analysis is performed to find the ultimate strength of HPC beams to compare with experimental results. Nonlinear behaviour of steel reinforcing bars and plain concrete is simulated using appropriate constitutive models and experimental results. The results indicate that the ultimate strength, deformed shape and crack patterns of reinforced HPC beams obtained through the Finite Element Analysis (FEA) are confirming with the experimental results.

조밀 또는 비조밀 복부판을 갖는 HSB 플레이트거더의 비탄성 횡비틀림좌굴에 의한 휨강도 (Flexural Strength of HSB Plate Girder with Compact or Noncompact Web Due to Inelastic Lateral-Torsional Buckling)

  • 신동구;조은영
    • 대한토목학회논문집
    • /
    • 제32권6A호
    • /
    • pp.399-409
    • /
    • 2012
  • 비세장 복부판을 갖고 균일모멘트를 받는 HSB 강재가 적용된 플레이트거더의 비탄성 횡비틀림좌굴 영역 휨강도 특성을 비선형 유한요소해석으로 분석하였다. HSB600 및 HSB800 강재로 제작된 균질단면 강거더와 HSB800 강재와 SM570-TMC 강재를 함께 적용한 하이브리드단면 거더를 고려하였으며, 일반강재와의 상대 비교를 위하여 SM490-TMC 강거더에 대한 해석도 수행하였다. 해석대상 비합성 I-거더 단면의 플랜지와 복부판을 쉘요소로 모델링하고 ABAQUS 프로그램을 이용하여 재료 및 기하학적 비선형 유한요소해석을 수행하였다. 강재는 탄소성-변형경화 재료로 모델링하였고 초기변형과 단면의 잔류응력을 고려하였으며, 이들이 비탄성 횡비틀림좌굴 영역에서 휨거동에 미치는 영향을 분석하였다. HSB 고강도강을 적용한 플레이트거더의 FE 해석과 한계상태법 도로교설계기준, AASHTO LRFD, Eurocode 등 국내외 주요 설계기준에 의한 공칭휨강도와 비교하고 이들 설계기준을 평가하였다.

LMC로 덧씌우기된 RC보의 비선형 휨 해석 (Nonlinear Flexural Analysis of RC Beam Overlayed by LMC)

  • 김성환;김동호;최성용;윤경구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.61-64
    • /
    • 2005
  • Recently to repair the structure of deteriorated concrete, LMC rehabilitation method is introduced. however, this method has the possible risks of brittle failure depending on bond performance of the interface. the prediction of interfacial behavior becomes essential to protect the failure. all of the studies which have been done about this field are only about material property such as strength, durability, bond. there is not enough data and studies about structural behavior and numerical analysis. therefore, in this study A flexural nonlinear analysis model of ABAQUS was proposed to predict the load-deflection response, interfacial stress, and ultimate strength. The parameter study showed that overlay thickness was a main influencing factor to the behavior of RC beam overlayed by LMC.

  • PDF

Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory

  • Belbachir, Nasrine;Bourada, Mohamed;Draiche, Kada;Tounsi, Abdelouahed;Bourada, Fouad;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • 제25권4호
    • /
    • pp.409-422
    • /
    • 2020
  • This article deals with the flexural analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal loading using a refined plate theory with four variables. In this theory, the undetermined integral terms are used and the number of variables is reduced to four, instead of five or more in other higher-order theories. The boundary conditions on the top and the bottom surfaces of the plate are satisfied; hence the use of the transverse shear correction factors is avoided. The principle of virtual work is used to obtain governing equations and boundary conditions. Navier solution for simply supported plates is used to derive analytical solutions. For the validation of the present theory, numerical results for displacements and stresses are compared with those of classical, first-order, higher-order and trigonometric shear theories reported in the literature.

A tension stiffening model for analysis of RC flexural members under service load

  • Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
    • Computers and Concrete
    • /
    • 제17권1호
    • /
    • pp.29-51
    • /
    • 2016
  • Tension-stiffening is the contribution of concrete between the cracks to carry tensile stresses after cracking in Reinforced Concrete (RC) members. In this paper, a tension-stiffening model has been proposed for computationally efficient nonlinear analysis of RC flexural members subjected to service load. The proposed model has been embedded in a typical cracked span length beam element. The element is visualized to consist of at the most five zones (cracked or uncracked). Closed form expressions for flexibility and stiffness coefficients and end displacements have been obtained for the cracked span length beam element. Further, for use in everyday design, a hybrid analytical-numerical procedure has been developed for nonlinear analysis of RC flexural members using the proposed tension-stiffening model. The procedure yields deflections as well as redistributed bending moments. The proposed model (and developed procedure) has been validated by the comparison with experimental results reported elsewhere and also by comparison with the Finite Element Method (FEM) results. The procedure would lead to drastic reduction in computational time in case of large RC structures.

Finite Element Modeling and Nonlinear Analysis for Seismic Assessment of Off-Diagonal Steel Braced RC Frame

  • Ramin, Keyvan;Fereidoonfar, Mitra
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권1호
    • /
    • pp.89-118
    • /
    • 2015
  • The geometric nonlinearity of off-diagonal bracing system (ODBS) could be a complementary system to covering and extending the nonlinearity of reinforced concrete material. Finite element modeling is performed for flexural frame, x-braced frame and the ODBS braced frame system at the initial phase. Then the different models are investigated along various analyses. According to the experimental results of flexural and x-braced frame, the verification is done. Analytical assessments are performed in according to three dimensional finite element modeling. Nonlinear static analysis is considered to obtain performance level and seismic behaviour, and then the response modification factors calculated from each model's pushover curve. In the next phase, the evaluation of cracks observed in the finite element models, especially for RC members of all three systems is performed. The finite element assessment is performed on engendered cracks in ODBS braced frame for various time steps. The nonlinear dynamic time history analysis accomplished in different stories models for three records of Elcentro, Naghan and Tabas earthquake accelerograms. Dynamic analysis is performed after scaling accelerogram on each type of flexural frame, x-braced frame and ODBS braced frame one by one. The base-point on RC frame is considered to investigate proportional displacement under each record. Hysteresis curves are assessed along continuing this study. The equivalent viscous damping for ODBS system is estimated in according to references. Results in each section show the ODBS system has an acceptable seismic behaviour and their conclusions have been converged when the ODBS system is utilized in reinforced concrete frame.

Prestressed concrete bridges with corrugated steel webs: Nonlinear analysis and experimental investigation

  • Chen, Xia-chun;Bai, Zhi-zhou;Zeng, Yu;Jiang, Rui-juan;Au, Francis T.K.
    • Steel and Composite Structures
    • /
    • 제21권5호
    • /
    • pp.1045-1067
    • /
    • 2016
  • Concrete bridges with corrugated steel webs and prestressed by both internal and external tendons have emerged as one of the promising bridge forms. In view of the different behaviour of components and the large shear deformation of webs with negligible flexural stiffness, the assumption that plane sections remain plane may no longer be valid, and therefore the classical Euler-Bernoulli and Timoshenko beam models may not be applicable. In the design of this type of bridges, both the ultimate load and ductility should be examined, which requires the estimation of full-range behaviour. An analytical sandwich beam model and its corresponding beam finite element model for geometric and material nonlinear analysis are developed for this type of bridges considering the diaphragm effects. Different rotations are assigned to the flanges and corrugated steel webs to describe the displacements. The model accounts for the interaction between the axial and flexural deformations of the beam, and uses the actual stress-strain curves of materials considering their stress path-dependence. With a nonlinear kinematical theory, complete description of the nonlinear interaction between the external tendons and the beam is obtained. The numerical model proposed is verified by experiments.

Nonlinear flexural analysis of laminated composite flat panel under hygro-thermo-mechanical loading

  • Kar, Vishesh R.;Mahapatra, Trupti R.;Panda, Subrata K.
    • Steel and Composite Structures
    • /
    • 제19권4호
    • /
    • pp.1011-1033
    • /
    • 2015
  • In this article, large amplitude bending behaviour of laminated composite flat panel under combined effect of moisture, temperature and mechanical loading is investigated. The laminated composite panel model has been developed mathematically by introducing the geometrical nonlinearity in Green-Lagrange sense in the framework of higher-order shear deformation theory. The present study includes the degraded composite material properties at elevated temperature and moisture concentration. In order to achieve any general case, all the nonlinear higher order terms have been included in the present formulation and the material property variations are introduced through the micromechanical model. The nonlinear governing equation is obtained using the variational principle and discretised using finite element steps. The convergence behaviour of the present numerical model has been checked. The present proposed model has been validated by comparing the responses with those available published results. Some new numerical examples have been solved to show the effect of various parameters on the bending behaviour of laminated composite flat panel under hygro-thermo-mechanical loading.

습식접합부를 갖는 프리캐스트 세그먼트 PSC-I형 거더의 2차원 비선형해석 (Two-Demensional Nonlinear Analysis of Precast Segmental PSC-I Girder with Wet Joint)

  • 김광수;홍성남;한경남;박선규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제11권6호
    • /
    • pp.103-112
    • /
    • 2007
  • 본 연구의 목적은 건설현장에서 노무비와 공사비를 절감하기 위하여 5개의 프리캐스트 세그먼트로 구성된 프리스트레스트 콘크리트 거더를 제작하여 그 역학적인 거동 특성을 평가하는데 있다. 본 연구를 위하여 총 4개의 25m 실험체를 동일 단면으로 제작하였으며, 모멘트-처짐 곡선으로 텐던변화와 접합부에 대한 분석과 해석을 수행하였다. 또한, 실험결과를 검증하기 위하여 2차원 비선형유한요소해석을 수행하였으며, 해석결과는 실험체의 모멘트-처짐곡선을 비교적 잘 예측하였다.