• Title/Summary/Keyword: Nonlinear configuration

Search Result 284, Processing Time 0.029 seconds

Effect of staircase on seismic performance of RC frame building

  • Kumbhar, Onkar G.;Kumar, Ratnesh;Adhikary, Shrabony
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.375-390
    • /
    • 2015
  • Staircase is a vertical transportation element commonly used in every multistoried structure. Inclined flights of staircase are usually casted monolithically with RC frame. The structural configuration of stairs generally introduces discontinuities into the typical regular reinforced concrete frame composed of beams and columns. Inclined position of flight transfers both vertical as well as horizontal forces in the frame. Under lateral loading, staircase in a multistory RC frame building develops truss action creating a local stiffening effect. In case of seismic event the stiff area around staircase attracts larger force. Therefore, special attention is required while modeling and analyzing the building with staircase. However, in general design practice, designers usually ignore the staircase while modeling either due to ignorance or to avoid complexity. A numerical study has been conducted to examine the effect of ignoring staircase in modeling and design of RC frame buildings while they are really present in structure, may be at different locations. Linear dynamic analysis is performed on nine separate building models to evaluate influence of staircase on dynamic characteristics of building, followed by nonlinear static analysis on the same models to access their seismic performance. It is observed that effect of ignoring staircase in modeling is severe and leads to unsafe structure. Effect of location and orientation of staircase is also important in determining seismic performance of RC frame buildings.

Quay Mooring Analysis (안벽계류해석)

  • Tae-Myoung,Oh;Deuk-Joon,Yum
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.3
    • /
    • pp.47-55
    • /
    • 1990
  • This paper presents the quasi-static mooring analysis model for a vessel moored at the quay. The results of this analysis will aid the designer in determining the mooring configuration for the surface vessels subjected to wind, current and wave forces. And it will also help him in selecting the equipment for the fixed mooring system. The cumulative elastic behavior of the mooring lines invokes a complicated nonlinear problem since the mooring lines are relatively short and hang in air as noncoplanar configurations. This nonlinear mooring problem is solved in this paper by the load increment technique in which the external load is increased step by step taking all sources of nonlinearity into account.

  • PDF

Considerations for Seismic Design of Low-Rise Residential Bearing Wall Buildings with Pilotis (필로티형 저층 내력벽주택의 내진설계 고려사항)

  • Lee, Seung Jae;Eom, Tae Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.31-42
    • /
    • 2019
  • In this study, the results of an analytical investigation on the seismic behavior of two residential 4-story bearing wall buildings with pilotis, each of which has symmetric or unsymmetric wall arrangement at their piloti level, are presented. The dynamic characteristics and lateral resistance of the piloti buildings were investigated through linear elastic and nonlinear static analyses. According to the results, the analytical natural period of vibration of the piloti buildings were significantly shorter than the fundamental period calculated in accordance with KBC 2016. In the initial elastic behavior, the walls resisting in-plane shear contributed to the lateral stiffness and strength, while the contribution of columns resisting flexural moments in double curvature was limited. However, after the shear cracking and yielding of the walls occurred, the columns significantly contributed to the residual strength and ductility. Based on those investigations, design recommendations of low-rise bearing wall buildings with piloti configuration are given.

Experimental Study of Spacecraft Pose Estimation Algorithm Using Vision-based Sensor

  • Hyun, Jeonghoon;Eun, Youngho;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.263-277
    • /
    • 2018
  • This paper presents a vision-based relative pose estimation algorithm and its validation through both numerical and hardware experiments. The algorithm and the hardware system were simultaneously designed considering actual experimental conditions. Two estimation techniques were utilized to estimate relative pose; one was a nonlinear least square method for initial estimation, and the other was an extended Kalman Filter for subsequent on-line estimation. A measurement model of the vision sensor and equations of motion including nonlinear perturbations were utilized in the estimation process. Numerical simulations were performed and analyzed for both the autonomous docking and formation flying scenarios. A configuration of LED-based beacons was designed to avoid measurement singularity, and its structural information was implemented in the estimation algorithm. The proposed algorithm was verified again in the experimental environment by using the Autonomous Spacecraft Test Environment for Rendezvous In proXimity (ASTERIX) facility. Additionally, a laser distance meter was added to the estimation algorithm to improve the relative position estimation accuracy. Throughout this study, the performance required for autonomous docking could be presented by confirming the change in estimation accuracy with respect to the level of measurement error. In addition, hardware experiments confirmed the effectiveness of the suggested algorithm and its applicability to actual tasks in the real world.

Control system design for vessel towing system by activating rudders of the towed vessel

  • Lee, Dong-Hun;Chakir, Soumayya;Kim, Young-Bok;Tran, Duc-Quan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.943-956
    • /
    • 2020
  • In this study, the motion control problem of the vessel towed by a towing ship (tugboat) is considered. The non-powered towed ship is dragged by the towing ship. Even though the towed ship is equipped with propulsion systems, they cannot be used at low or constant speeds due to safety issues. In narrow canals, rivers, and busy harbor areas especially, where extreme tension is required during towing operation, the course stability of the towed vessel depends on the towing ship. Therefore, the authors propose a new control strategy in which the rudder system of the towed vessel is activated to provide its maneuverability. Based on the leader-follower system configuration, a nonlinear mathematical model is derived and a back-stepping control is designed. By simulation and experiment results with a comparison study, the usefulness and effectiveness of the proposed strategy are validated.

Nonlinear finite element model of the beam-to-column connection for precast concrete frames with high ratio of the continuity tie bars

  • Sergio A. Coelho;Sergio A. Coelho
    • Computers and Concrete
    • /
    • v.31 no.1
    • /
    • pp.53-69
    • /
    • 2023
  • The rotational stiffness of a semi-rigid beam-to-column connection plays an important role in the reduction of the second-order effects in the precast concrete skeletal frames. The aim of this study is to present a detailed nonlinear finite element study to reproduce the experimental response of a semi-rigid precast beam-to-column connection composed by corbel, dowel bar and continuity tie bars available in the literature. A parametric study was carried using four arrangements of the reinforcing tie bars in the connection, including high ratio of the continuity tie bars passing around the column in the cast-in-place concrete. The results from the parametric study were compared to analytical equations proposed to evaluate the secant rotational stiffness of beam-to-column connections. The good agreement with the experimental results was obtained, demonstrating that the finite element model can accurately predict the structural behaviour of the beam-to-column connection despite its complex geometric configuration. The secant rotational stiffness of the connection was good evaluated by the analytical model available in the literature for ratio of the continuity tie bars of up to 0.69%. Precast beam-to-column connection with a ratio of the continuity tie bars higher than 1.4% had the secant stiffness overestimated. Therefore, an adjustment coefficient for the effective depth of the crack at the end of the beam was proposed for the analytical model, which is a function of the ratio of the continuity tie bars.

Utilization of deep learning-based metamodel for probabilistic seismic damage analysis of railway bridges considering the geometric variation

  • Xi Song;Chunhee Cho;Joonam Park
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.469-479
    • /
    • 2023
  • A probabilistic seismic damage analysis is an essential procedure to identify seismically vulnerable structures, prioritize the seismic retrofit, and ultimately minimize the overall seismic risk. To assess the seismic risk of multiple structures within a region, a large number of nonlinear time-history structural analyses must be conducted and studied. As a result, each assessment requires high computing resources. To overcome this limitation, we explore a deep learning-based metamodel to enable the prediction of the mean and the standard deviation of the seismic damage distribution of track-on steel-plate girder railway bridges in Korea considering the geometric variation. For machine learning training, nonlinear dynamic time-history analyses are performed to generate 800 high-fidelity datasets on the seismic response. Through intensive trial and error, the study is concentrated on developing an optimal machine learning architecture with the pre-identified variables of the physical configuration of the bridge. Additionally, the prediction performance of the proposed method is compared with a previous, well-defined, response surface model. Finally, the statistical testing results indicate that the overall performance of the deep-learning model is improved compared to the response surface model, as its errors are reduced by as much as 61%. In conclusion, the model proposed in this study can be effectively deployed for the seismic fragility and risk assessment of a region with a large number of structures.

Phenomenology of nonlinear aeroelastic responses of highly deformable joined wings

  • Cavallaro, Rauno;Iannelli, Andrea;Demasi, Luciano;Razon, Alan M.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.2
    • /
    • pp.125-168
    • /
    • 2015
  • Dynamic aeroelastic behavior of structurally nonlinear Joined Wings is presented. Three configurations, two characterized by a different location of the joint and one presenting a direct connection between the two wings (SensorCraft-like layout) are investigated. The snap-divergence is studied from a dynamic perspective in order to assess the real response of the configuration. The investigations also focus on the flutter occurrence (critical state) and postcritical phenomena. Limit Cycle Oscillations (LCOs) are observed, possibly followed by a loss of periodicity of the solution as speed is further increased. In some cases, it is also possible to ascertain the presence of period doubling (flip-) bifurcations. Differences between flutter (Hopf's bifurcation) speed evaluated with linear and nonlinear analyses are discussed in depth in order to understand if a linear (and thus computationally less intense) representation provides an acceptable estimate of the instability properties. Both frequency- and time-domain approaches are compared. Moreover, aerodynamic solvers based on the potential flow are critically examined. In particular, it is assessed in what measure more sophisticated aerodynamic and interface models impact the aeroelastic predictions. When the use of the tools gives different results, a physical interpretation of the leading mechanism generating the mismatch is provided. In particular, for PrandtlPlane-like configurations the aeroelastic response is very sensitive to the wake's shape. As a consequence, it is suggested that a more sophisticate modeling of the wake positively impacts the reliability of aerodynamic and aeroelastic analysis. For SensorCraft-like configurations some LCOs are characterized by a non-synchronous motion of the inner and outer portion of the lower wing: the wing's tip exhibits a small oscillation during the descending or ascending phase, whereas the mid-span station describes a sinusoidal-like trajectory in the time-domain.

The characteristics of nonlinear magneto-optical effect based on coherent population trapping in the D1 line of Rh atoms (87Rb D1 전이선에서 원자결맞음을 이용한 비선형 광자기 효과 신호의 특성)

  • Lee, L.;Moon, H.S.;Kim, J.B.
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • We investigated the characteristics of the nonlinear magneto-optic effect (NMOE) depend on the transitions, the laser intensity and the temperature of the vapor cell, in the $D_1$ transition of $^{87}Rb$ atoms by using the Rb vapor cell contained with buffer gas of Ne 6.7 kPa. The size and the width of NMOE signal were increased according to the light intensity and temperature in the transition of F=2$\to$F'=2. However, In the case of using the F=2$\to$F'=1 transition, the size of the signal could be increased according to the light intensity without additional broadening of the width. We confirmed that the sensitivity of detecting small magnetic flux improved in this transition, and explained these effects by the different of the CPT configuration between Zeeman sublevels. At the optimal condition in experiment, the sensitivity of this system was evaluated less then $70pT/\sqrt{Hz}$.

Nonlinear Magneto-optic Effect in the Paraffin Coated Rb Vapor Cell (파라핀이 코팅된 Rb 증기 셀에서 비선형 광자기 효과 신호)

  • Lee, Hyun-Joon;Yu, Ye-Jin;Bae, In-Ho;Moon, Han-Seb
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.4
    • /
    • pp.249-254
    • /
    • 2009
  • In our study, the Hanle spectrum and nonlinear magneto-optic effect (NMOE) signals were observed as a function of magnetic field on $D_1$ line of $^{87}Rb$ atoms contained in a paraffin coated vapor cell. We observed the double structure from the Hanle and the NMOE spectrum in the paraffin coated Rb vapor cell. The narrow spectral width of the narrow resonance signal is approximately 1 kHz and the magnitude is approximately 10 percent of the total spectrum. Also, the NMOE signals corresponding to the Hanle configuration consisted of two different dispersion-like features. At the near zero magnetic field, a sharp slope signal was centered, and its value was 10 mV/${\mu}T$ with laser power was $200{\mu}W$.