• Title/Summary/Keyword: Nonlinear behaviour

Search Result 422, Processing Time 0.038 seconds

Study on dynamic behavior analysis of towed line array sensor

  • Shin, Hyun-Kyoung;Ryue, Jung-Soo;Ahn, Hyung-Taek;Seo, Hee-Seon;Kwon, Oh-Cho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.9-19
    • /
    • 2012
  • A set of equations of motion is derived for vibratory motions of an underwater cable connected to a moving vehicle at one end and with drogues at the other end. From the static analysis, cable configurations are obtained for different vehicle speeds and towing pretensions are determined by fluid resistance of drogues. Also the dynamic analysis is required to predict its vibratory motion. Nonlinear fluid drag forces greatly influence the dynamic tension. In this study, a numerical analysis program was developed to find out the characteristic of cable behaviour. The motion is described in terms of space and time coordinates based on Chebyshev polynomial expansions. For the spatial integration the collocation method is employed and the Newmark method is applied for the time integration. Dynamic tensions, displacements, velocities, accelerations were predicted in the time domain while natural frequencies and transfer functions were obtained in the frequency domain.

Dynamic response of a linear two d.o.f system visco-elastically coupled with a rigid block

  • Di Egidio, Angelo;Pagliaro, Stefano;Fabrizio, Cristiano;de Leo, Andrea M.
    • Coupled systems mechanics
    • /
    • v.8 no.4
    • /
    • pp.351-375
    • /
    • 2019
  • The present work investigates the use of a rigid rocking block as a tool to reduce vibrations in a frame structure. The study is based on a simplified model composed by a 2-DOF linear system, meant to represent a general M-DOF frame structure, coupled with a rocking rigid block through a linear visco-elastic device, which connects only the lower part of the 2-DOF system. The possibility to restrain the block directly to the ground, by means of a second visco-elastic device, is investigated as well. The dynamic response of the model under an harmonic base excitation is then analysed in order to evaluate the effectiveness of the coupling in reducing the displacements and the drift of the 2-DOF system. The nonlinear equations of motion of the coupled assemblage 2-DOF-block are obtained by a Lagrangian approach and then numerically integrated considering some reference mechanical and geometrical quantities as variable parameters. It follows an extensive parametric analysis, whose results are summarized through behaviour maps, which portray the ratio between the maximum displacements and drifts of the system, with and without the coupling with the rigid block, for several combinations of system's parameters. When the ratio of the displacements is less than unity, the coupling is considered effective. Results show that the presence of the rocking rigid block improves the dynamics of the system in large ranges of the characterizing parameters.

Numerical studies of the failure modes of ring-stiffened cylinders under hydrostatic pressure

  • Muttaqie, Teguh;Thang, Do Quang;Prabowo, Aditya Rio;Cho, Sang-Rai;Sohn, Jung Min
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.431-443
    • /
    • 2019
  • The present paper illustrates a numerical investigation on the failure behaviour of ring-stiffened cylinder subjected to external hydrostatic pressure. The published test data of steel welded ring-stiffened cylinder are surveyed and collected. Eight test models are chosen for the verification of the modelling and FE analyses procedures. The imperfection as the consequences of the fabrication processes, such as initial geometric deformation and residual stresses due to welding and cold forming, which reduced the ultimate strength, are simulated. The results show that the collapse pressure and failure mode predicted by the nonlinear FE analyses agree acceptably with the experimental results. In addition, the failure mode parameter obtained from the characteristic pressure such as interframe buckling pressure known as local buckling pressure, overall buckling pressure, and yield pressure are also examined through the collected data and shows a good correlation. A parametric study is then conducted to confirm the failure progression as the basic parameters such as the shell radius, thickness, overall length of the compartment, and stiffener spacing are varied.

Performance evaluation and hysteretic modeling of low rise reinforced concrete shear walls

  • Nagender, T.;Parulekar, Y.M.;Rao, G. Appa
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.41-54
    • /
    • 2019
  • Reinforced Concrete (RC) shear walls are widely used in Nuclear power plants as effective lateral force resisting elements of the structure and these may experience nonlinear behavior for higher earthquake demand. Short shear walls of aspect ratio less than 1.5 generally experience combined shear flexure interaction. This paper presents the results of the displacement-controlled experiments performed on six RC short shear walls with varying aspect ratios (1, 1.25 and 1.5) for monotonic and reversed quasi-static cyclic loading. Simulation of the shear walls is then carried out by Finite element modeling and also by macro modeling considering the coupled shear and flexure behaviour. The shear response is estimated by softened truss theory using the concrete model given by Vecchio and Collins (1994) with a modification in softening part of the model and flexure response is estimated using moment curvature relationship. The accuracy of modeling is validated by comparing the simulated response with experimental one. Moreover, based on the experimental work a multi-linear hysteretic model is proposed for short shear walls. Finally ultimate load, drift, ductility, stiffness reduction and failure pattern of the shear walls are studied in details and hysteretic energy dissipation along with damage index are evaluated.

FINITE SPEED OF PROPAGATION IN DEGENERATE EINSTEIN BROWNIAN MOTION MODEL

  • HEVAGE, ISANKA GARLI;IBRAGIMOV, AKIF
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.2
    • /
    • pp.108-120
    • /
    • 2022
  • We considered qualitative behaviour of the generalization of Einstein's model of Brownian motion when the key parameter of the time interval of free jump degenerates. Fluids will be characterised by number of particles per unit volume (density of fluid) at point of observation. Degeneration of the phenomenon manifests in two scenarios: a) flow of the fluid, which is highly dispersing like a non-dense gas and b) flow of fluid far away from the source of flow, when the velocity of the flow is incomparably smaller than the gradient of the density. First, we will show that both types of flows can be modeled using the Einstein paradigm. We will investigate the question: What features will particle flow exhibit if the time interval of the free jump is inverse proportional to the density and its gradient ? We will show that in this scenario, the flow exhibits localization property, namely: if at some moment of time t0 in the region, the gradient of the density or density itself is equal to zero, then for some T during time interval [t0, t0 + T] there is no flow in the region. This directly links to Barenblatt's finite speed of propagation property for the degenerate equation. The method of the proof is very different from Barenblatt's method and based on the application of Ladyzhenskaya - De Giorgi iterative scheme and Vespri - Tedeev technique. From PDE point of view it assumed that solution exists in appropriate Sobolev type of space.

Noise and Fault Diagonois Using Control Theory

  • Park, R. W.;J. S. Kook;S. Cho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.301-307
    • /
    • 1998
  • The goal of this paper is to describe an advanced method of the fault diagnois using Control Theory with reference to a crack detection, a new way to localize the crack position under infulence of the plant disturbance and white measurement noise on a rotating shaft. As a first step, the shaft is physically modelled with a finite element method as usual and the dynamic mathematical model is derived from it using the Hamilton - principle and in this way the system is modelled by various subsystems. The equations of motion with crack is established by adaption of the local stiffness change through breathing and gaping from the crack to the equation of motion with un-damaged shaft. This is supposed to be regarded as reference for the given system. Based on the fictitious model of the time behaviour induced from vibration phenomena measured at the bearings, a nonlinear State Observer is designed in order to detect the crack on the shaft. This is elementary NL- observer(EOB). Using the elementary observer, an Estimator(Observer) Bank is established and arranged at the certain position on the shaft. In case a crack is found and its position is known, the procedure for the estimation of the depth is going to begin.

  • PDF

Failure mechanism and bearing capacity of inclined skirted footings

  • Rajesh P. Shukla;Ravi S. Jakka
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.41-54
    • /
    • 2023
  • The use of a skirt, a vertical projection attached to the footing, is a recently developed method to increase the bearing capacity of soils and reduce foundation settlements. Most of the studies were focused on vertical skirted circular footings resting on clay while neglecting the rigidity and inclination of skirts. This study employs finite element limit analysis to investigate the bearing capacity enhancement of flexible and rigid inclined skirts in cohesionless soils. The results indicate that the bearing capacity initially improves with an increase in the skirt inclination but subsequently decreases for both flexible and rigid skirts. However, the rigid skirt exhibits more apparent optimum skirt inclination and bearing capacity enhancement than the flexible one, owing to differences in their failure mechanisms. Furthermore, the bearing capacity of the inclined skirted foundation increases with the skirt length, footing depth, and internal friction angle of the soil. In the case of rigid skirts, the bearing capacity increases linearly with skirt length, while for flexible skirts, it reaches a stable value at a certain skirt length. The efficiency of the flexible footing reduces as the footing depth and soil internal friction angle increase. Conversely, the efficiency of the rigid skirt decreases only with an increase in the depth of the footing. The paper also presents a detailed analysis of various failure patterns, highlighting the behaviour of inclined skirted footings. Additionally, nonlinear regression equations are provided to quantify and predict the bearing capacity enhancement with the inclined skirts.

Flexural behaviour of GFRP reinforced concrete beams under cyclic loading

  • Murthy, A. Ramachandra;Gandhi, P.;Pukazhendhi, D.M.;Samuel, F. Giftson;Vishnuvardhan, S.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.361-373
    • /
    • 2022
  • This paper examines the flexural performance of concrete beams reinforced with glass fibre-reinforced polymer (GFRP) bars under fatigue loading. Experiments were carried out on concrete beams of size 1500×200×100 mm reinforced with 10 mm and 13 mm diameter GFRP bars under fatigue loading. Experimental investigations revealed that fatigue loading affects both strength and serviceability properties of GFRP reinforced concrete. Experimental results indicated that (i) the concrete beams experienced increase in deflection with increase in number of cycles and failed suddenly due to snapping of rebars and (ii) the fatigue life of concrete beams drastically decreased with increase in stress level. Analytical model presented a procedure for predicting the deflection of concrete beams reinforced with GFRP bars under cyclic loading. Deflection of concrete beams was computed by considering the aspects such as stiffness degradation, force equilibrium equations and effective moment of inertia. Nonlinear finite element (FE) analysis was performed on concrete beams reinforced with GFRP bars. Appropriate constitutive relationships for concrete and GFRP bars were considered in the numerical modelling. Concrete non linearity has been accounted through concrete damage plasticity model available in ABAQUS. Deflection versus number of cycles obtained experimentally for various beams was compared with the analytical and numerical predictions. It was observed that the predicted values are comparable (less than 20% difference) with the corresponding experimental observations.

A Study on the Behaviour of Baekma River Sands Using Elasto-Plastic Hyperbolic Model (탄·소성 쌍곡선 모델을 이용한 백마강 모래의 거동특성 연구)

  • Yang, Seung-Jae;Park, Ki-Hyeon;Park, Hyung-Yeol;Yang, Kyung-Jin;Kim, Chan-kee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.93-101
    • /
    • 2020
  • In order to predict the nonlinear behaviour of the soil, the elasto-plastic hyperbolic model was selected, which was considered to be relatively simple and highly predictable. The soil parameter determination and the behavior analysis program were developed by formalizing the functions related to the constitutive model. Each soil parameter was determined from the results of the drained triaxial compression tests of Baekma river sand with the change of relative density. The stress-strain behavior was predicted using the soil parameters determined under each condition. As a result, the deviator stress for the axial strain is verified to have a good match between the measured value and predicted value at each relative density. In the relationship between the volumetric stain and the axial strain, when the relative density is loose, the measured value and predicted value tend to match, and when relative density is dense, the predicted value of the volumetric strain appears somewhat smaller than the measured value due to the limitation of the constitutive model.

A Study on the Application of Numerical Model to Predict Behaviour of EPS (EPS 거동 예측 모델의 적용성에 대한 연구)

  • Cheon, Byeong-Sik;Yu, Han-Gyu;Im, Hae-Sik
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.185-198
    • /
    • 1996
  • EPS is increasingly used as a filling material in soft ground. The beneficial effects of the use of EPS derive from minimizing the stress increment, which, in turn, increases the bearing capacity and reduces the settlement. EPS can also be used as a backfill material for retaining walls and abutments to reduce the horizontal earth pressure. However, there is no rational application for the selection of the EPS fill which is essential to the selection of the filling configuration and the settlement calculation. In this paper, therefore, the nonlinear numerical model developed from the results of triaxial compression tests is applied to the construction of EPS and verified through the comparison between the prediction and in-situ measurements.

  • PDF