• 제목/요약/키워드: Nonlinear behavior of connection

검색결과 135건 처리시간 0.018초

접합부 비선형 거동을 고려한 강구조 비가새 골조의 안정성 (The Stability of Steel Unbraced Frames Considering Nonlinear Behavior of Connections)

  • 김희동
    • 한국강구조학회 논문집
    • /
    • 제17권4호통권77호
    • /
    • pp.469-479
    • /
    • 2005
  • 강구조 비가새 골조의 접합부로서 반강접합부를 적용하게 되면 접합부의 비선형적인 모멘트-회전각 관계는 강구조 비가새 골조의 거동($P-\Delta$ 효과) 및 안정성에 영향을 미치게 된다. 따라서 본 연구에서는 이러한 접합부 비선형 거동이 골조의 거동 및 안정성에 미치는 영향을 2차 비탄성 해석을 통하여 고찰하고, 안정성에 영향을 미치는 주요 인자 및 그 경향들을 분석하였다. 연구 결과 접합부의 비선형 거동은 골조의 안정성에 직접적인 영향을 미치는 것으로 나타났으며 주요 영향인자는 접합부의 회전강성, 반강접합부의 적용 위치 등으로 나타났다.

Nonlinear modeling of a RC beam-column connection subjected to cyclic loading

  • Dominguez, Norberto;Perez-Mota, Jesus
    • Computers and Concrete
    • /
    • 제21권3호
    • /
    • pp.299-310
    • /
    • 2018
  • When reinforced concrete structures are subjected to strong seismic forces, their beam-column connections are very susceptible to be damaged during the earthquake event. Consequently, structural designers try to fit an important quantity of steel reinforcement inside the connection, complicating its construction without a clear justification for this. The aim of this work is to evaluate -and demonstrate- numerically how the quantity and the array of the internal steel reinforcement influences on the nonlinear response of the RC beam-column connection. For this, two specimens (extracted from an experimental test of 12 RC beam-column connections reported in literature) were modeled in the Finite Element code FEAP considering different stirrup's arrays. The nonlinear response of the RC beam-column connection is evaluated taking into account the nonlinear thermodynamic behavior of each component: a damage model is used for concrete; a classical plasticity model is adopted for steel reinforcement; the steel-concrete bonding is considered perfect without degradation. At the end, the experimental responses obtained in the tests are compared to the numerical results, as well as the distribution of shear stresses and damage inside the concrete core of the beam-column connection, which are analyzed for a low and high state of confinement.

경량형강 시설물의 비선형 구조해석 모델개발(II) -반강결 뼈대구조물의 해석에 대하여- (Development of the Nonlinear Structural Analysis Model for the Light-Weight Framed Structures (II))

  • 김한중;이정재
    • 한국농공학회지
    • /
    • 제40권1호
    • /
    • pp.78-87
    • /
    • 1998
  • In this study, semi-rigid light-weight framed structures analysis model (SERIFS) was developed by advancing the LEIFS model. This model enables us to analyze simultaneous effects of large deflection and semi-rigid connection by computing unbalanced load occurring in the process of repeated loading through equalization of bending moments and torsion. This model is also able to handle the effect of the semi-rigid connection and large deflection by modifying the elastic stiffness matrix using moment-rotation behavior of connection. Moment-rotation behavior of the semi-rigid connection was adopted from the experimental results of load-vertical displacement of frame element In conclusion, this model achieves to analyze the nonlinear and large deflection behavior on the semi-rigid and light-weight steel frame connection.

  • PDF

Effect of connection modeling on the seismic response of steel braced non-moment resisting frames

  • Bagheri, Saman;Tabrizi, Navid Vafi
    • Structural Engineering and Mechanics
    • /
    • 제68권5호
    • /
    • pp.591-601
    • /
    • 2018
  • Non-moment beam-to-column connections, which are usually referred to as simple or shear connections, are typically designed to carry only gravity loads in the form of vertical shears. Although in the analysis of structures these connections are usually assumed to be pinned, they may provide a small amount of rotational stiffness due to the typical connection details. This paper investigates the effects of this small rotational restraint of simple beam-to-column connections on the behavior and seismic response of steel braced non-moment resisting frames. Two types of commonly used simple connections with bolted angles, i.e., the Double Web angle Connection (DWC) and Unstiffened Seat angle Connection (USC) are considered for this purpose. In addition to the pinned condition - as a simplified representation of these connections - more accurate semi-rigid models are established and then applied to some frame models subjected to nonlinear pushover and nonlinear time history analyses. Although the use of bracing elements generally reduces the sensitivity of the global structural response to the behavior of connections, the obtained results indicate considerable effects on the local responses. Namely, our results show that consideration of the real behavior of connections is essential in designing the column elements where the pin-connection assumption significantly underestimates design of outer columns of upper stories.

볼트 유격을 고려한 단층 그리드 노드 접합 시스템의 휨 강성에 대한 구조 해석적 평가 (Numerical Evaluation on Bending Stiffness of Nodal Connection Systems in the Single Layered Grid Considering Bolt Clearance)

  • 황경주
    • 한국공간구조학회논문집
    • /
    • 제20권4호
    • /
    • pp.141-147
    • /
    • 2020
  • Single-layered grid space steel roof structure is an architectural system in which the structural ability of the nodal connection system greatly influences the stability of the entire structure. Many bolt connection systems have been suggested to enhance for better construct ability, but the structural behavior and maximum resistance of the connection system according to the size of bolt clearance play were difficult to identify. In particular, the identification of bending stiffness of the connection system is very important due to the characteristics of shell structures in which membrane stresses based on bending force effect significantly. To identify effective structural behavior and maximum bearing force, four representative nodal connection systems were selected and nonlinear numerical analysis were performed. The numerical analysis considering the size of the bolt clearance were performed to investigate structural behavior and maximum values of the bending force. In addition, the type of effective nodal connection system were evaluated. As a result, the connection system, which has two shear plane, represented high bending stiffness.

Coupling of nonlinear models for steel-concrete interaction in structural RC joints

  • Dominguez, Norberto;Perez-Mota, Jesus
    • Coupled systems mechanics
    • /
    • 제3권2호
    • /
    • pp.195-211
    • /
    • 2014
  • When strong seismic forces act on reinforced concrete structures, their beam-column connections are very susceptible to damage during the earthquake event. The aim of this numerical work is to evaluate the influence of the internal steel reinforcement array on the nonlinear response of a RC beam-column connection when it is subjected to strong cyclic loading -as a seismic load. For this, two specimens (extracted from an experimental test of 12 RC beam-column connections reported in literature) were modeled in the Finite Element code FEAP considering different stirrup's arrays. In order to evaluate the nonlinear response of the RC beam-column connection, the 2D model takes into account the nonlinear thermodynamic behavior of each component: for concrete, a damage model is used; for steel reinforcement, it is adopted a classical plasticity model; in the case of the steel-concrete bonding, this one is considered perfect without degradation. At the end, we show a comparison between the experimental test's responses and the numerical results, which includes the distribution of shear stresses and damage inside the concrete core of the beam-column connection; in the other hand, the effects on the connection of a low and high state of confinement are analyzed for all cases.

Semi-rigid connection modeling for steel frameworks

  • Liu, Yuxin
    • Structural Engineering and Mechanics
    • /
    • 제35권4호
    • /
    • pp.431-457
    • /
    • 2010
  • This article provides a discussion of the mathematic modeling of connections for designing and qualifying structures, systems, and components subject to monotonic or cyclic loading. To characterize the force-deformation behavior of connections under monotonic loading, a review of the Ramberg-Osgood, Richard-Abbott, and Menegotto-Pinto models is conducted, and it is shown that these nonlinear functions can be mathematically derived by scaling up or down a linear force-deformation function. A generalized four-parameter model for simulating connection behavior is investigated to facilitate nonlinear regression analysis. In order to perform seismic analysis of frameworks, a hysteretic model accounting for loading, unloading, and reloading is described using the established monotonic model. For preliminary analysis, a method is provided to quickly determine the model parameters that fit approximately with the observed data. To reach more accurate values of the parameters, the methods of nonlinear regression analysis are investigated and the modified Levenberg-Marquardt and separable nonlinear least-square algorithms are applied in determining the model parameters. Example case studies illustrate the procedure for the computation through the use of experimental/analytical data taken form the literature. Transformation of connection curves from the three-parameter model to the four-parameter model for structural analysis is conducted based on the modeling of connections subject to fire.

파괴지수분석에 의한 WUF-W 접합부의 연쇄붕괴저항 회전능력평가 (Progressive Collapse-Resistant Rotational Capacity Evaluation of WUF-W Connection by Fracture Index Analysis)

  • 김선웅
    • 한국지진공학회논문집
    • /
    • 제22권6호
    • /
    • pp.353-360
    • /
    • 2018
  • This paper is to investigate the micro-behavior of the double-span beams with WUF-W seismic connection under combined axial tension and moment and to propose the rational rotational capacity of it for progressive collapse-resistant analysis and design addressing the stress and strain transfer mechanism. To this end, the behavior of the double-span beams under the column missing event is first investigated using the advanced nonlinear finite element analysis. The characteristics of fracture indices of double-span beams with WUF-W connection under combined axial tension and flexural moment are addressed and then proposed the rational rotational capacity as the basic datum for the progressive collapse-resistant design and analysis. The distribution of fracture indices related to stress and strain for the double-span beams is investigated based on a material and geometric nonlinear finite element analysis. Furthermore, the micro-behavior for earthquake and progressive collapse is explicitly different.

비선형 유한요소법을 이용한 메탈 플레이트 접합부의 거동해석 (Analysis of Behavior of Metal Plate Connection by Nonlinear Finite Element Method)

  • 현재혁;김광철;이전제
    • Journal of the Korean Wood Science and Technology
    • /
    • 제27권3호
    • /
    • pp.23-30
    • /
    • 1999
  • 경골 목조 트러스를 접합하는데 가장 널리 사용되는 메탈 플레이트 접합부의 거동을 해석하기 위한 연구가 많이 수행되어왔다. 유한요소법을 사용한 해석은 그 연구들중의 하나이다. 선형 모델을 사용한 유한요소법은 하중-변위 곡선의 초기 경사를 예측하는데는 유효하게 사용될 수 있다. 하지만, 하중이 증가할수록 예측된 변위는 실험치에 비해 과예측이 된다. 따라서 선형 모델을 비선형부분을 예측하는데는 사용할 수 없다. 실제 거동을 더욱 정확하게 예측하기 위해, 본 연구에서는 비선형 항을 유한요소 모델에 첨가시켰다. EA와 AA 형태에서는 예측치와 실험치간에 고도의 유사성을 보여주었다. 하지만, EE와 AE 형태에서는 곡선의 비선형 부분에서 실험치와 예측치가 약간의 차이를 보여주었다. 이러한 결과는 슬립의 효과를 충분히 반영하지 못한 것에 기인한 것으로 추측된다. 결과적으로 메틸플레이트 접합부의 거동에 있어서 비선형 해석의 정확도를 증진시키기 위해서는 반드시 슬립의 효과가 고려되어야 할 것이다.

  • PDF

Nonlinear modeling of flat-plate structures using grid beam elements

  • Tian, Ying;Chen, Jianwei;Said, Aly;Zhao, Jian
    • Computers and Concrete
    • /
    • 제10권5호
    • /
    • pp.489-505
    • /
    • 2012
  • This paper presents a simplified grid beam model for simulating the nonlinear response of reinforced concrete flat-plate structures. The beam elements are defined with nonlinear behavior for bending moment and torsion. The flexural stiffness and torsional strength of the beam elements are defined based on experimental data to implicitly account for slab two-way bending effects. A failure criterion that considers the interaction between the punching strength and slab flexural behavior is incorporated in the model. The effects of bond-slip of slab reinforcement on connection stiffness are examined. The proposed grid beam model is validated by simulating large-scale tests of slab-column connections subjected to concentric gravity loading and unbalanced moment. This study also determines the critical parameters for a hysteretic model used to simulate flat-plates subjected to cyclic lateral loading.