• Title/Summary/Keyword: Nonlinear analysis method

Search Result 3,587, Processing Time 0.029 seconds

A Study on 3[kW] PMA-RSG Optimal Design for Mobile Power Supply (이동형 전원장치용 3[kW] PMA-RSG의 최적 설계에 대한 연구)

  • Baik, Jei-Hoon;Toliyat, Hamid A.;Kim, Nam-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.6
    • /
    • pp.109-117
    • /
    • 2009
  • In this paper, an analytical model using equivalent magnetic circuits for the PMA-SynRG is presented. The lumped parameter model (LPM) is developed from machine geometry, stator winding and machine operating specifications. By the LPM, magnetic saturation of rotor bridges is incorporated into model and it provides effective means of predicting machine performance for a given machine geometry. The LPM is not as accurate as finite element analysis but the equivalent magnetic circuits provide fast means of analyzing electromagnetic characteristics of PMa-SynRG. It is the main advantage to find the initial design and optimum design. The initial design of PMa_RSG is performed by LPM model and FEM analysis, and the final PMA-RSG design is optimized and identified by FEM analysis considering actual machine design. The linear LPM and the nonlinear LPM are programmed using MATLAB and all of machine parameters are calculated very quickly. To verify justification of the proposed design of PMa-RSM, back-EMF is measured.

Hysteretic behaviors and calculation model of steel reinforced recycled concrete filled circular steel tube columns

  • Ma, Hui;Zhang, Guoheng;Xin, A.;Bai, Hengyu
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.305-326
    • /
    • 2022
  • To realize the recycling utilization of waste concrete and alleviate the shortage of resources, 11 specimens of steel reinforced recycled concrete (SRRC) filled circular steel tube columns were designed and manufactured in this study, and the cyclic loading tests on the specimens of columns were also carried out respectively. The hysteretic curves, skeleton curves and performance indicators of columns were obtained and analysed in detail. Besides, the finite element model of columns was established through OpenSees software, which considered the adverse effect of recycled coarse aggregate (RA) replacement rates and the constraint effect of circular steel tube on internal RAC. The numerical calculation curves of columns are in good agreement with the experimental curves, which shows that the numerical model is relatively reasonable. On this basis, a series of nonlinear parameters analysis on the hysteretic behaviors of columns were also investigated. The results are as follows: When the replacement rates of RA increases from 0 to 100%, the peak loads of columns decreases by 7.78% and the ductility decreases slightly. With the increase of axial compression ratio, the bearing capacity of columns increases first and then decreases, but the ductility of columns decreases rapidly. Increasing the wall thickness of circular steel tube is very profitable to improve the bearing capacity and ductility of columns. When the section steel ratio increases from 5.54% to 9.99%, although the bearing capacity of columns is improved, it has no obvious contribution to improve the ductility of columns. With the decrease of shear span ratio, the bearing capacity of columns increases obviously, but the ductility decreases, and the failure mode of columns develops into brittle shear failure. Therefore, in the engineering design of columns, the situation of small shear span ratio (i.e., short columns) should be avoided as far as possible. Based on this, the calculation model on the skeleton curves of columns was established by the theoretical analysis and fitting method, so as to determine the main characteristic points in the model. The effectiveness of skeleton curve model is verified by comparing with the test skeleton curves.

A Proposed Algorithm and Sampling Conditions for Nonlinear Analysis of EEG (뇌파의 비선형 분석을 위한 신호추출조건 및 계산 알고리즘)

  • Shin, Chul-Jin;Lee, Kwang-Ho;Choi, Sung-Ku;Yoon, In-Young
    • Sleep Medicine and Psychophysiology
    • /
    • v.6 no.1
    • /
    • pp.52-60
    • /
    • 1999
  • Objectives: With the object of finding the appropriate conditions and algorithms for dimensional analysis of human EEG, we calculated correlation dimensions in the various condition of sampling rate and data aquisition time and improved the computation algorithm by taking advantage of bit operation instead of log operation. Methods: EEG signals from 13 scalp lead of a man were digitized with A-D converter under the condition of 12 bit resolution and 1000 Hertz of sampling rate during 32 seconds. From the original data, we made 15 time series data which have different sampling rate of 62.5, 125, 250, 500, 1000 hertz and data acqusition time of 10, 20, 30 second, respectively. New algorithm to shorten the calculation time using bit operation and the Least Trimmed Squares(LTS) estimator to get the optimal slope was applied to these data. Results: The values of the correlation dimension showed the increasing pattern as the data acquisition time becomes longer. The data with sampling rate of 62.5 Hz showed the highest value of correlation dimension regardless of sampling time but the correlation dimension at other sampling rates revealed similar values. The computation with bit operation instead of log operation had a statistically significant effect of shortening of calculation time and LTS method estimated more stably the slope of correlation dimension than the Least Squares estimator. Conclusion: The bit operation and LTS methods were successfully utilized to time-saving and efficient calculation of correlation dimension. In addition, time series of 20-sec length with sampling rate of 125 Hz was adequate to estimate the dimensional complexity of human EEG.

  • PDF

Effect of bone-implant contact pattern on bone strain distribution: finite element method study (골-임플란트 접촉 양상에 따른 골 변형 연구: 유한요소법적 연구)

  • Yoo, Dong-Ki;Kim, Seong-Kyun;Koak, Jai-Young;Kim, Jin-Heum;Heo, Seong-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.3
    • /
    • pp.214-221
    • /
    • 2011
  • Purpose: To date most of finite element analysis assumed the presence of 100% contact between bone and implant, which is inconsistent with clinical reality. In human retrieval study bone-implant contact (BIC) ratio ranged from 20 to 80%. The objective of this study was to explore the influence of bone-implant contact pattern on bone of the interface using nonlinear 3-dimensional finite element analysis. Materials and methods: A computer tomography-based finite element models with two types of implant (Mark III Br${\aa}$nemark$^{(R)}$, Inplant$^{(R)}$) which placed in the maxillary 2nd premolar area were constructed. Two different degrees of bone-implant contact ratio (40, 70%) each implant design were simulated. 5 finite element models were constructed each bone-implant contact ratio and implant design, and sum of models was 40. The position of bone-implant contact was determined according to random shuffle method. Elements of bone-implant contact in group W (wholly randomized osseointegration) was randomly selected in terms of total implant length including cortical and cancellous bone, while ones in group S (segmentally randomized osseointegration) was randomly selected each 0.75 mm vertically and horizontally. Results: Maximum von Mises strain between group W and group S was not significantly different regardless of bone-implant contact ratio and implant design (P=.939). Peak von Mises strain of 40% BIC was significantly lower than one of 70% BIC (P=.007). There was no significant difference between Mark III Br${\aa}$nemark$^{(R)}$ and Inplant$^{(R)}$ in 40% BIC, while average of peak von Mises strain for Inplant$^{(R)}$ was significantly lower ($4886{\pm}1034\;{\mu}m/m$) compared with MK III Br${\aa}$nemark$^{(R)}$ ($7134{\pm}1232\;{\mu}m/m$) in BIC 70% (P<.0001). Conclusion: Assuming bone-implant contact in finite element method, whether the contact elements in bone were wholly randomly or segmentally randomly selected using random shuffle method, both methods could be effective to be no significant difference regardless of sample size.

Inexpensive Visual Motion Data Glove for Human-Computer Interface Via Hand Gesture Recognition (손 동작 인식을 통한 인간 - 컴퓨터 인터페이스용 저가형 비주얼 모션 데이터 글러브)

  • Han, Young-Mo
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.341-346
    • /
    • 2009
  • The motion data glove is a representative human-computer interaction tool that inputs human hand gestures to computers by measuring their motions. The motion data glove is essential equipment used for new computer technologiesincluding home automation, virtual reality, biometrics, motion capture. For its popular usage, this paper attempts to develop an inexpensive visual.type motion data glove that can be used without any special equipment. The proposed approach has the special feature; it can be developed as a low-cost one becauseof not using high-cost motion-sensing fibers that were used in the conventional approaches. That makes its easy production and popular use possible. This approach adopts a visual method that is obtained by improving conventional optic motion capture technology, instead of mechanical method using motion-sensing fibers. Compared to conventional visual methods, the proposed method has the following advantages and originalities Firstly, conventional visual methods use many cameras and equipments to reconstruct 3D pose with eliminating occlusions But the proposed method adopts a mono vision approachthat makes simple and low cost equipments possible. Secondly, conventional mono vision methods have difficulty in reconstructing 3D pose of occluded parts in images because they have weak points about occlusions. But the proposed approach can reconstruct occluded parts in images by using originally designed thin-bar-shaped optic indicators. Thirdly, many cases of conventional methods use nonlinear numerical computation image analysis algorithm, so they have inconvenience about their initialization and computation times. But the proposed method improves these inconveniences by using a closed-form image analysis algorithm that is obtained from original formulation. Fourthly, many cases of conventional closed-form algorithms use approximations in their formulations processes, so they have disadvantages of low accuracy and confined applications due to singularities. But the proposed method improves these disadvantages by original formulation techniques where a closed-form algorithm is derived by using exponential-form twist coordinates, instead of using approximations or local parameterizations such as Euler angels.

Development of a Model for Calculating Road Congestion Toll with Sensitivity Analysis (민감도 분석을 이용한 도로 혼잡통행료 산정 모형 개발)

  • Kim, Byung-Kwan;Lim, Yong-Taek;Lim, Kang-Won
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.5
    • /
    • pp.139-149
    • /
    • 2004
  • As the expansion of road capacity has become impractical in many urban areas, congestion pricing has been widely considered as an effective method to reduce urban traffic congestion in recent years. The principal reason is that the congestion pricing may lead the user equilibrium (UE) flow pattern to system optimum (SO) pattern in road network. In the context of network equilibrium, the link tolls according to the marginal cost pricing principle can user an UE flow to a SO pattern. Thus, the pricing method offers an efficient tool for moving toward system optimal traffic conditions on the network. This paper proposes a continuous network design program (CNDP) in network equilibrium condition, in order to find optimal congestion toll for maximizing net economic benefit (NEB). The model could be formulated as a bi-level program with continuous variable(congestion toll) such that the upper level problem is for maximizing the NEB in elastic demand, while the lower level is for describing route choice of road users. The bi-level CNDP is intrinsically nonlinear, non-convex, and hence it might be difficult to solve. So, we suggest a heuristic solution algorithm, which adopt derivative information of link flow with respect to design parameter, or congestion toll. Two example networks are used for test of the model proposed in the paper.

Assessment of p-y Behaviors of a Cyclic Laterally Loaded Pile in Saturated Dense Silty Sand (조밀한 포화 실트질 모래지반에서 횡방향 반복하중을 받는 말뚝의 p-y 거동 평가)

  • Baek, Sung-Ha;Choi, Changho;Cho, Jinwoo;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.97-110
    • /
    • 2019
  • Piles that support offshore wind turbine structures are dominantly subjected to cyclic lateral loads of wind, waves, and tidal forces. For a successful design, it is imperative to investigate the behavior of the cyclic laterally loaded piles; the p-y curve method, in which the pile and soil are characterized as an elastic beam and nonlinear springs, respectively, has been typically utilized. In this study, model pile tests were performed in a 1 g gravitational field so as to investigate the p-y behaviors of cyclic laterally loaded piles installed in saturated dense silty sand. Test results showed that cyclic lateral loads gradually reduced the overall stiffness of the p-y curves (initial stiffness and ultimate soil reaction). This is because the cyclic lateral loads disturbed the surrounding soil, which led to the decrement of the soil resistance. The decrement effects of the overall stiffness of the p-y curves became more apparent as the magnitude of cyclic lateral load increased and approached the soil surface. From the test results, the cyclic p-y curve was developed using a p-y backbone curve method. Pseudo-static analysis was also performed with the developed cyclic p-y curve, confirming that it was able to properly predict the behaviors of cyclic laterally loaded pile installed in saturated dense silty sand.

An Indeterminate Strut-Tie Model and Load Distribution Ratio for Reinforced Concrete Corbels (철근콘크리트 코벨의 부정정 스트럿-타이 모델 및 하중분배율)

  • Chae, Hyun Soo;Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1065-1079
    • /
    • 2014
  • The ultimate behavior of reinforced concrete corbel is complicated due to the primary design variables including the shear span-to-effective depth ratio a/d, flexural reinforcement ratio, load condition, and material properties. In this study, a simple indeterminate strut-tie model reflecting all characteristics of the ultimate strength and complicated structural behavior is proposed for the design of the reinforced concrete corbels with shear span-to-effective depth ratio of $a/d{\leq}1$. A load distribution ratio, defined as the fraction of applied load transferred by horizontal truss mechanism, is also proposed to help structural designers perform the design of reinforced concrete corbels by using the strut-tie model approaches of current design codes. For the development of the load distribution ratio, numerous material nonlinear finite element analyses of the proposed indeterminate strut-tie model were conducted by changing primary design variables. The ultimate strengths of reinforced concrete corbels tested to failure were evaluated by incorporating the proposed strut-tie model and load distribution ratio into the ACI 318-11's strut-tie model method. The validity of the proposed model and load distribution ratio was examined by comparing the strength analysis results with those by the ACI 318-11's conventional design method and strut-tie model methods of current design codes.

FE-Simulation and Measurement of the Residual Stress in Al6061 During T6 Heat Treatment (Al6061-T6 열처리 잔류응력의 유한요소해석 및 측정)

  • Ko, Dae-Hoon;Kim, Tae-Jung;Lim, Hak-Jin;Lee, Jung-Min;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.717-722
    • /
    • 2011
  • The purpose of this study is to predict the residual stress in Al6061 during T6 heat treatment. In this study, the variable residual stress in case of the solid solution($530^{\circ}C$, 2h) and artificial ageing($175^{\circ}C$, 9h) of Al6061 subjected to T6 heat treatment is determined at different ageing times. A heat treatment experiment is conducted to determine the heat transfer coefficient, on the basis of which the residual stress during the T6 heat treatment is predicted. In order to take into account the relaxation of residual stress during artificial ageing, a Zener-Wert-Avrami function is used and elasto-plastic nonlinear analysis is conducted through FE-simulation. Further, the residual stress is measured by using the X-ray diffraction(XRD) method, and the result is compared with the result from the FE-simulation. It is found that the residual stress predicted form the FE-simulation is in good agreement with the residual stress measured by using the XRD method.

Curvature Linear Equation of a Two-Mirror System with a Finite Object Distance (유한 물체 거리를 갖는 2 반사경계의 곡률 선형 방정식)

  • Lee, Jung-Gee;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.5
    • /
    • pp.423-427
    • /
    • 2005
  • In this paper, we propose easily tooling method for Seidel third order aberration, which are not well utilized in actual design process due to the complication of mathematical operation and the difficulty of understanding Seidel third order aberration theory, even though most insightful and systematic means in pre-designing for the initial data of optimization. First, using paraxial ray tracing and Seidel third order aberration theory, spherical aberration coefficient is derived for a two-mirror system with a finite object distance. The coefficient, which is expressed as a higher-order nonlinear equation, consists of design parameters(object distance, two curvatures, and inter-mirror distance) and effective focal length(EFL). Then, the expressed analytical equation is solved by using a computer with numerical analysis method. From the obtained numerical solutions satisfying the nearly zero coefficient condition($<10^{-6}$), linear fitting process offers a linear relationship called the curvature linear equation between two mirrors. Consequently, this linear equation has two worthy meanings: the equation gives a possibility to obtain initial design data for optimization easily. And the equation shows linear relationship to a two-mirror system with a finite object distance under the condition of corrected third order spherical aberration.