• Title/Summary/Keyword: Nonlinear Vehicle Model

Search Result 317, Processing Time 0.029 seconds

STUDY ON APPLICATION OF NEURO-COMPUTER TO NONLINEAR FACTORS FOR TRAVEL OF AGRICULTURAL CRAWLER VEHICLES

  • Inaba, S.;Takase, A.;Inoue, E.;Yada, K.;Hashiguchi, K.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.124-131
    • /
    • 2000
  • In this study, the NEURAL NETWORK (hereinafter referred to as NN) was applied to control of the nonlinear factors for turning movement of the crawler vehicle and experiment was carried out using a small model of crawler vehicle in order to inspect an application of NN. Furthermore, CHAOS NEURAL NETWORK (hereinafter referred to as CNN) was also applied to this control so as to compare with conventional NN. CNN is especially effective for plane in many variables with local minimum which conventional NN is apt to fall into, and it is relatively useful to nonlinear factors. Experiment of turning on the slope of crawler vehicle was performed in order to estimate an adaptability of nonlinear problems by NN and CNN. The inclination angles of the road surface which the vehicles travel on, were respectively 4deg, 8deg, 12deg. These field conditions were selected by the object for changing nonlinear magnitude in turning phenomenon of vehicle. Learning of NN and CNN was carried out by referring to positioning data obtained from measurement at every 15deg in turning. After learning, the sampling data at every 15deg were interpolated based on the constructed learning system of NN and CNN. Learning and simulation programs of NN and CNN were made by C language ("Association of research for algorithm of calculating machine (1992)"). As a result, conventional NN and CNN were available for interpolation of sampling data. Moreover, when nonlinear intensity is not so large under the field condition of small slope, interpolation performance of CNN was a little not so better than NN. However, when nonlinear intensity is large under the field condition of large slope, interpolation performance of CNN was relatively better than NN.

  • PDF

Observer Based Estimation of Driving Resistance Load for Vehicle Longitudinal Motion Control

  • Kim, Duk-Ho;Shin, Byung-Kwan;Kyongsu Yi;Lee, Kyo-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.185-188
    • /
    • 1999
  • An estimation algorithm for vehicle driving load has been proposed in this paper. Driving load is an important factor in a vehicle's longitudinal motion control. An approach using an observer is introduced to estimate driving load based on inexpensive RPM sensors currently being used in production vehicles. Also, a torque estimation technique using nonlinear characteristic functions has been incorporated in this estimation algorithm. Using a nonlinear full vehicle simulation model, we study the effect of the driving load on longitudinal vehicle motion, and the performance of the estimation algorithm has been evaluated. The proposed estimation algorithm has good performance and robustness over uncertainties in the system parameters. An accurate estimate of the driving load can be very helpful in the development of advance vehicle control systems such as intelligent cruise control systems, CW/CA systems and smooth shift control systems.

  • PDF

Linear Model Predictive Control of 6-DOF Remotely Operated Underwater Vehicle Using Nonlinear Robust Internal-loop Compensator (비선형 강인 내부루프 보상기를 이용한 6자유도 원격조종 수중로봇의 선형 모델예측 제어)

  • Junsik Kim;Yuna Choi;Dongchul Lee;Youngjin Choi
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • This paper proposes a linear model predictive control of 6-DOF remotely operated underwater vehicles using nonlinear robust internal-loop compensator (NRIC). First, we design a integrator embedded linear model prediction controller for a linear nominal model, and then let the real model follow the values calculated through forward dynamics. This work is carried out through an NRIC and in this process, modeling errors and external disturbance are compensated. This concept is similar to disturbance observer-based control, but it has the difference that H optimality is guaranteed. Finally, tracking results at trajectory containing the velocity discontinuity point and the position tracking performance in the disturbance environment is confirmed through the comparative study with a traditional inverse dynamics PD controller.

A Nonlinear Information Filter for Tracking Maneuvering Vehicles in an Adaptive Cruise Control Environment

  • Kim, Yong-Shik;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1669-1674
    • /
    • 2004
  • In this paper, a nonlinear information filter (IF) for curvilinear motions in an interacting multiple model (IMM) algorithm to track a maneuvering vehicle on a road is investigated. Driving patterns of vehicles on a road are modeled as stochastic hybrid systems. In order to track the maneuvering vehicles, two kinematic models are derived: A constant velocity model for linear motions and a constant-speed turn model for curvilinear motions. For the constant-speed turn model, a nonlinear IF is used in place of the extended Kalman filter in nonlinear systems. The suggested algorithm reduces the root mean squares error for linear motions and rapidly detects possible turning motions.

  • PDF

Controller Design and Simulation of a Semi-Autonomous Underwater Vehide (반자율 무인잠수정의 제어기 설계 및 시뮬레이션)

  • Jeon, Bong-Hwan;Lee, Pan-Mook;Hong, Seok-Won
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.57-62
    • /
    • 2003
  • This paper describes the design and simulation of a multivariable optimal control system for the combined speed, heading and depth control of a Semi-Autonomous Underwater Vehicle (SAUV) developed in Korea Ocean Research and Development Institute (KRODI). The SAUV is a test-bed for the evaluation of the navigation and manipulator technologies developed for a mine disposal vehicle (MDV) in military use and for a light working underwater vehicle in scientific use. The vehicle was designed to control its cruising speed, heading and depth with 4 horizontal thrusters installed at the rear of the hull. Therefore, the decoupled control methods are limited to apply to the SAUV because the thrust forces are highly coupled with the surging, yawing, and pitching motion of the vehicle. The multivariable Linear Quadratic (LQ) control method is chosen to control steering and diving in variable speed motion automatically. A series of simulation is carried out with fully nonlinear six degree of freedom dynamic model to validate the controller.

  • PDF

Simulation of Vehicle Steering Control through Differential Braking (차동 제동을 이용한 조향 제어 시뮬레이션)

  • 제롬살랑선네;윤여흥;장봉춘;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.65-74
    • /
    • 2002
  • This paper examines the usefulness of a Brake Steer System (BSS), which uses differential brake forces for steering intervention in the context of Intelligent Transportation Systems (ITS). In order to help the car to turn, a yaw moment can be achieved by altering the left/right and front/rear brake distribution. This resulting yaw moment on the vehicle affects lateral position thereby providing a limited steering function. The steering function achieved through BSS can then be used to control lateral position in an unintended road departure system. A 8-DOF nonlinear vehicle model including STI tire model will be validated using the equations of motion of the vehicle. Then a controller will be developed. This controller, which will be a PID controller tuned by Ziegler-Nichols, will be designed to explore BSS feasibility by modifying the brake distribution through the control of the yaw rate of the vehicle.

Development of Uni-Axial Bushing Model for the Vehicle Dynamic Analysis Using the Bouc-Wen Hysteretic Model (Bouc-Wen 모델을 이용한 차량동역학 해석용 1축 부싱모델의 개발)

  • Ok, Jin-Kyu;Yoo, Wan-Suk;Sohn, Jeong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.158-165
    • /
    • 2006
  • In this paper, a new uni-axial bushing model for vehicle dynamics analysis is proposed. Bushing components of a vehicle suspension system are tested to capture the nonlinear and hysteric behavior of the typical rubber bushing elements using the MTS machine. The results of the tests are used to develop the Bouc-Wen bushing model. The Bouc-Wen model is employed to represent the hysteretic characteristics of the bushing. ADAMS program is used for the identification process and VisualDOC program is also used to find the optimal coefficients of the model. Genetic algorithm is employed to carry out the optimal design. A numerical example is suggested to verify the performance of the proposed model.

A Study on the Affection of Frequency and Displacement for Nonlinear Viscoelastic Bushing Model (비선형 점탄성 부싱모델에 대한 주파수와 변위의 영향에 대한 연구)

  • 이성범
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.772-775
    • /
    • 2003
  • A bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. A bushing is a hollow cylinder, which is bonded to a solid steel shaft at its inner surface and a steel sleeve at its outer surface. The relation between the force applied to the shaft and the relative deformation of a bushing is nonlinear and exhibits features of viscoelasticity. A force-displacement relation for bushings is important for multibody dynamics numerical simulations. For the nonlinear viscoelastic axial response, Pipkin-Rogers model, the direct relation of force and displacement, has been derived from Lianis model and the sinusoidal input was used for Pipkin-Rogers model, and the affection of displacement with frequency change was studied with Pipkin-Rogers model.

  • PDF

A Study on the Affection of Frequency and Displacement for Nonlinear Viscoelastic Bushing Model (비선형 점탄성 부싱모델에 대한 주파수와 변위의 영향에 대한 연구)

  • Lee, Seong-Beom
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.474-478
    • /
    • 2004
  • A bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. A bushing is a hollow cylinder, which is bonded to a solid steel shaft at its inner surface and a steel sleeve at its outer surface. The relation between the force applied to the shaft and the relative deformation of a bushing is nonlinear and exhibits features of viscoelasticity. A force-displacement relation for bushings is important for multibody dynamics numerical simulations. For the nonlinear viscoelastic axial response, Pipkin-Rogers model, the direct relation of force and displacement, has been derived from Lianis model and the sinusoidal input was used for Pipkin-Rogers model, and the affection of displacement with frequency change was studied with Pipkin-Rogers model.

  • PDF

Non-linear Analysis for a Weatherstrip of a Vehicle Door with FE Modeling (자동차 도어 웨더스트립의 유한요소 모델링 및 해석)

  • 김광훈;문병영;김병수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.38-41
    • /
    • 2004
  • Weatherstrip seals protect passengers form noise, dust, rain and wind out of the vehicle. The more contact area between a body frame and a weatherstrip, the higher efficiency of sealing. A weatherstrip is a sort of an elastomer. Mechanical properties of the weatherstrip is obtained by uniaxial tension test. In this study, nonlinear finite element(FE) analysis is performed to obtain displacements and contact shapes of the weatherstrip. The FE model is developed by using Ogden-foam formulation. In the results of nonlinear FE analysis, the most valuable deformation of the weatherstrip occurred when displacement control value reaches 7.2mm. Severe deformation is observed as the displacement control value become more increased.

  • PDF