• Title/Summary/Keyword: Nonlinear Stiffness

Search Result 1,087, Processing Time 0.031 seconds

Nonlinear hysteretic behavior of hybrid beams consisted of reinforced concrete and steel (철근콘크리트와 철골조로 이루어진 혼합구조보의 비선형 이력거동에 관한 연구)

  • 이은진;김욱종;문정호;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.19-26
    • /
    • 1999
  • This paper describes an analytical study on nonlinear hysteretic behavior of hybrid steel beam with reinforced concrete ends. Two types of analytical model, Polygonal Model[PM] and Hybrid Model[HM], were used to represent the nonlinear hysteretic behavior PM used three parameters, HM used an additional parameter to consider the initial stiffness reduction. The parameters calibrated comparing the hysteretic performance obtained from experiments. The purpose of this study is to develop an analytical model which can take into account the initial stiffness reduction of the hybrid members and to represent exactly the hysteretic performance for the hybrid structures with RC and steel. The analytical study showed PM tends to overestimate initial stiffness and strength. However, HM which is capable to consider the initial stiffness reduction gave good prediction on initial stiffness, post-yielding performance, strength, pinching response and so on.

  • PDF

A Study on the Dynamic Characteristics of Catenary (가선계의 동특성 해석)

  • 최병두;김정수
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.525-532
    • /
    • 1998
  • In this study, dynamic characteristics of catenary that supplies electrical power to high-speed trains is investigated. A particular emphasis is placed on the effect of droppers on the dynamic response of the contact wire, a dropper is an element that connects the contact wire with the messenger wire so as to maintain near uniform compliance, Finite element model compressing 3 spans is constructed. For the linear model, droppers are modeled as linear springs with various stiffness values. Modal analysis is performed to obtain the natural frequencies and modes and the variation in the modal density distribution for changing stiffness values are noted. Impulse response is also obtained through computer simulation. In practice, dropper is a nonlinear element with low stiffness in compression and high stiffness in tension. Hence, dropper can be modeled as a nonlinear spring with hi-directional stiffness values. Impulse and harmonic responses are obtained for the nonlinear model through simulation. The responses aye also compared with the linear cases.

  • PDF

Development of Stiffness Estimation Algorithm for Nonlinear Static Analysis of Bilinear Material Model (이선형 재료모델의 비선형 정적해석을 위한 강성추정 알고리즘 개발)

  • Jung, Sung-Jin;Park, Se-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.620-626
    • /
    • 2016
  • Estimating the nonlinear seismic response of structure in earthquake engineering is important. Nonlinear static analysis is a typical method, and a variety of methods and techniques for estimating the stiffness of structural system at a certain analysis stage have been introduced and used in numerical structural analysis. On the other hand, such methods have many difficulties in practical usage because they use time-consuming iterative methods or simplified algorithms for calculating the structural stiffness at specific points in the time of nonlinear static analysis. For this reason, this study suggests an accurate and effective method for estimating the stiffness of a structure in nonlinear static analysis. For this goal, existing theories of an incremental step-by-step solution was investigated first. Subsequently, an algorithm available for calculating the precise stiffness of a structural system, each element of which has a bilinear material model, was developed based on the investigated methods. Finally, a computer program, sNs, was developed with the algorithm used.

Nonlinear Aeroelastic Characteristics of Composite Wing with Flap (복합재 플랩 날개의 비선형 공력탄성학 해석)

  • Shin, Won-Ho;Bae, Jae-Sung;Lee, In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.253-256
    • /
    • 2005
  • Nonlinear aeroelastic analyses of composite wing with flap are performed considering free-play and dynamic stiffness of actuator. Doublet-Hybrid method is used for the calculation of subsonic unsteady aerodynamic forces. Free-play is modeled as an asymmetric bilinear spring and is linearized by using the describing function method. The linear and nonlinear flutter analyses show that the flutter characteristics are significantly dependent on the free-play and dynamic stiffness. From the nonlinear flutter analysis, various types of limit cycle oscillations are observed in a range of air speeds below or above the linear divergent flutter boundary.

  • PDF

Seismic Object Performance Evaluation of Braced Steel Moment Resisting Frames with Low Rise Building under Different Site Stiffness (지반강성을 고려한 중저층 가새모멘트저항골조의 내진 목표성능평가)

  • Kim, Soo Jung;Choi, Byong Jeong;Park, Ho Young;Lee, Jinwoo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.91-101
    • /
    • 2016
  • This study is the compared seismic performance that are difference between the performance of structures on various site classes and beam-column connection. this analysis model was designed the previous earthquake load. To compare the performance levels of the structure was subjected to nonlinear static and nonlinear dynamic analysis. Nonlinear analysis was used to The Perform 3D program. Nonlinear static analysis was compared with the performance point and Nonlinear dynamic analysis was compared the drift ratio(%). Analysis results, the soft site class of the displacement was more increase than rock site classes of the displacement. Also The smaller the displacement was increased beam-column connection stiffness.

Identification of plastic deformations and parameters of nonlinear single-bay frames

  • Au, Francis T.K.;Yan, Z.H.
    • Smart Structures and Systems
    • /
    • v.22 no.3
    • /
    • pp.315-326
    • /
    • 2018
  • This paper presents a novel time-domain method for the identification of plastic rotations and stiffness parameters of single-bay frames with nonlinear plastic hinges. Each plastic hinge is modelled as a pseudo-semi-rigid connection with nonlinear hysteretic moment-curvature characteristics at an element end. Through the comparison of the identified end rotations of members that are connected together, the plastic rotation that furnishes information of the locations and plasticity degrees of plastic hinges can be identified. The force consideration of the frame members may be used to relate the stiffness parameters to the elastic rotations and the excitation. The damped-least-squares method and damped-and-weighted-least-squares method are adopted to estimate the stiffness parameters of frames. A noise-removal strategy employing a de-noising technique based on wavelet packets with a smoothing process is used to filter out the noise for the parameter estimation. The numerical examples show that the proposed method can identify the plastic rotations and the stiffness parameters using measurements with reasonable level of noise. The unknown excitation can also be estimated with acceptable accuracy. The advantages and disadvantages of both parameter estimation methods are discussed.

Estimation of Hysteretic Interfacial Stiffness of Contact Surfaces

  • Kim, Nohyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.3
    • /
    • pp.276-282
    • /
    • 2013
  • This paper proposes an ultrasonic method for measurement of linear and hysteretic interfacial stiffness of contacting surfaces between two steel plates subjected to nominal compression pressure. Interfacial stiffness was evaluated by the reflection and transmission coefficients obtained from three consecutive reflection waves from solid-solid surface using the shear wave. A nonlinear hysteretic spring model was proposed and used to define the quantitative interfacial stiffness of interface with the reflection and transmission coefficients. Acoustic model for 1-D wave propagation across interfaces is developed to formulate the reflection and transmission waves and to determine the linear and nonlinear hysteretic interfacial stiffness. Two identical plates are put together to form a contacting surface and pressed by bolt-fastening to measure interfacial stiffness at different states of contact pressure. It is found from experiment that the linear and hysteretic interfacial stiffness are successfully determined by the reflection and transmission coefficient at the contact surfaces through ultrasonic pulse-echo measurement.

Novel nonlinear stiffness parameters and constitutive curves for concrete

  • Al-Rousan, Rajai Z.;Alhassan, Mohammed A.;Hejazi, Moheldeen A.
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.539-550
    • /
    • 2018
  • Concrete is highly non-linear material which is originating from the transition zone in the form of micro-cracks, governs material response under various loadings. In this paper, the constitutive models published by many researchers have been used to generate novel stiffness parameters and constitutive curves for concrete. Following such linear material formulations, where the energy is conservative during the curvature, and a nonlinear contribution to the concrete has been made and investigated. In which, nonlinear concrete elastic modulus modeling has been developed that is capable-of representing concrete elasticity for grades ranging from 10 to 140 MPa. Thus, covering the grades range of concrete up to the ultra-high strength concrete, and replacing many concrete models that are valid for narrow ranges of concrete strength grades. This has been followed by the introduction of the nonlinear Hooke's law for the concrete material through the replacement of the Young constant modulus with the nonlinear modulus. In addition, the concept of concrete elasticity index (${\varphi}$) has been proposed and this factor has been introduced to account for the degradation of concrete stiffness in compression under increased loading as well as the multi-stages micro-cracking behavior of concrete under uniaxial compression. Finally, a sub-routine artificial neural network model has been developed to capture the concrete behavior that has been introduced to facilitate the prediction of concrete properties under increased loading.

Damage assessment of shear buildings by synchronous estimation of stiffness and damping using measured acceleration

  • Shin, Soobong;Oh, Seong Ho
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.245-261
    • /
    • 2007
  • Nonlinear time-domain system identification (SI) algorithm is proposed to assess damage in a shear building by synchronously estimating time-varying stiffness and damping parameters using measured acceleration data. Mass properties have been assumed as the a priori known information. Viscous damping was utilized for the current research. To chase possible nonlinear dynamic behavior under severe vibration, an incremental governing equation of vibrational motion has been utilized. Stiffness and damping parameters are estimated at each time step by minimizing the response error between measured and computed acceleration increments at the measured degrees-of-freedom. To solve a nonlinear constrained optimization problem for optimal structural parameters, sensitivities of acceleration increment were formulated with respect to stiffness and damping parameters, respectively. Incremental state vectors of vibrational motion were computed numerically by Newmark-${\beta}$ method. No model is pre-defined in the proposed algorithm for recovering the nonlinear response. A time-window scheme together with Monte Carlo iterations was utilized to estimate parameters with noise polluted sparse measured acceleration. A moving average scheme was applied to estimate the time-varying trend of structural parameters in all the examples. To examine the proposed SI algorithm, simulation studies were carried out intensively with sample shear buildings under earthquake excitations. In addition, the algorithm was applied to assess damage with laboratory test data obtained from free vibration on a three-story shear building model.

Nonlinear Aeroelastic Analyses of Composite Wing with Flap (플랩을 갖는 복합재 평판 날개의 비선형 공력 탄성학 해석)

  • Shin, Won-Ho;Bae, Jae-Sung;Lee, In
    • Composites Research
    • /
    • v.20 no.1
    • /
    • pp.8-14
    • /
    • 2007
  • Nonlinear aeroelastic analyses of composite wing with flap are performed considering free-play and dynamic stiffness of actuator. Doublet-Hybrid method is used for the calculation of subsonic unsteady aerodynamic forces. Free-play is modeled as a bilinear spring and is linearized by using the describing function method. Dynamic stiffness is obtained from governing equation of gear system and the aeroelastic analyses were performed according to ply-angle of laminate and material. The linear and nonlinear flutter analysis results show that the flutter characteristics are significantly dependent on the free-play and dynamic stiffness. from the nonlinear flutter analysis, various types of limit cycle oscillations are observed in a range of air speeds below or above the linear divergent flutter boundary.