• 제목/요약/키워드: Nonlinear Static Analysis

검색결과 796건 처리시간 0.025초

Assessment of capacity curves for transmission line towers under wind loading

  • Banik, S.S.;Hong, H.P.;Kopp, Gregory A.
    • Wind and Structures
    • /
    • 제13권1호
    • /
    • pp.1-20
    • /
    • 2010
  • The recommended factored design wind load effects for overhead lattice transmission line towers by codes and standards are evaluated based on the applicable wind load factor, gust response factor and design wind speed. The current factors and design wind speed were developed considering linear elastic responses and selected notional target safety levels. However, information on the nonlinear inelastic responses of such towers under extreme dynamic wind loading, and on the structural capacity curves of the towers in relation to the design capacities, is lacking. The knowledge and assessment of the capacity curve, and its relation to the design strength, is important to evaluate the integrity and reliability of these towers. Such an assessment was performed in the present study, using a nonlinear static pushover (NSP) analysis and incremental dynamic analysis (IDA), both of which are commonly used in earthquake engineering. For the IDA, temporal and spatially varying wind speeds are simulated based on power spectral density and coherence functions. Numerical results show that the structural capacity curves of the tower determined from the NSP analysis depend on the load pattern, and that the curves determined from the nonlinear static pushover analysis are similar to those obtained from IDA.

Pseudo-static stability analysis of wedges based on the nonlinear Barton-Bandis failure criterion

  • Zhao, Lianheng;Jiao, Kangfu;Zuo, Shi;Yu, Chenghao;Tang, Gaopeng
    • Geomechanics and Engineering
    • /
    • 제20권4호
    • /
    • pp.287-297
    • /
    • 2020
  • This paper investigates the stability of a three-dimensional (3D) wedge under the pseudo-static action of an earthquake based on the nonlinear Barton-Bandis (B-B) failure criterion. The influences of the mechanical parameters of the discontinuity surface, the geometric parameters of the wedge and the pseudo-static parameters of the earthquake on the stability of the wedge are analyzed, as well as the sensitivity of these parameters. Moreover, a stereographic projection is used to evaluate the influence of pseudo-static direction on instability mode. The parametric analyses show that the stability coefficient and the instability mode of the wedge depend on the mechanical parameter of the rock mass, the geometric form of the wedge and the pseudo-static state of the earthquake. The friction angle of the rock φb, the roughness coefficient of the structure surface JRC and the two angles related to strikes of the joints θ1 and θ2 are sensitive to stability. Furthermore, the sensitivity of wedge height h, the compressive strength of the rock at the fracture surface JCS and the slope angle α to the stability are insignificant.

Determination of plastic hinge properties for static nonlinear analysis of FRP-strengthened circular columns in bridges

  • Amiri, Gholamreza Ghodrati;Jahromi, Azadeh Jaberi;Mohebi, Benyamin
    • Computers and Concrete
    • /
    • 제10권5호
    • /
    • pp.435-455
    • /
    • 2012
  • In the recent years, rehabilitation of structures, strengthening and increasing the ductility of them under seismic loads have become so vital that many studies has been carried out on the retrofit of steel and concrete members so far. Bridge piers are very important members concerning rehabilitation, in which the plastic hinging zone is very vulnerable. Pier is usually confined by special stirrups predicted in the design procedure; moreover, fiber-reinforced polymers (FRP) jackets are used after construction to confine the pier. FRP wrapping of the piers is one of the most effective ways of increasing moment and ductility capacity of them, which has a growing application due to its relative advantages. In many earthquake-resistant bridges, reinforced concrete columns have a major defect which could be retrofitted in different ways like using FRP. After rehabilitation, it is important to check the strengthening adequacy by dynamic nonlinear analysis and precise modeling of material properties. If the plastic hinge properties are simplified for the strengthened members, as the simplified properties which FEMA 356 proposes for non-strengthened members, static nonlinear analysis could be performed more easily. Current paper involves this matter and it is intended to determine the plastic hinge properties for static nonlinear analysis of the FRP-strengthened circular columns.

Probability-based prediction of residual displacement for SDOF using nonlinear static analysis

  • Feng, Zhibin;Gong, Jinxin
    • Earthquakes and Structures
    • /
    • 제22권6호
    • /
    • pp.571-584
    • /
    • 2022
  • The residual displacement ratio (RDRs) response spectra have been generally used as an important means to evaluate the post-earthquake repairability, and the ratios of residual to maximum inelastic displacement are considered to be more appropriate for development of the spectra. This methodology, however, assumes that the expected residual displacement can be computed as the product of the RDRs and maximum inelastic displacement, without considering the correlation between these two variables, which inevitably introduces potential systematic error. For providing an adequately accurate estimate of residual displacement, while accounting for the collapse resistance performance prior to the repairability evaluation, a probability-based procedure to estimate the residual displacement demands using the nonlinear static analysis (NSA) is developed for single-degree-of-freedom (SDOF) systems. To this end, the energy-based equivalent damping ratio used for NSA is revised to obtain the maximum displacement coincident with the nonlinear time history analysis (NTHA) results in the mean sense. Then, the possible systematic error resulted from RDRs spectra methodology is examined based on the NTHA results of SDOF systems. Finally, the statistical relation between the residual displacement and the NSA-based maximum displacement is established. The results indicate that the energy-based equivalent damping ratio will underestimate the damping for short period ranges, and overestimate the damping for longer period ranges. The RDRs spectra methodology generally leads to the results being non-conservative, depending on post-yield stiffness. The proposed approach emphasizes that the repairability evaluation should be based on the premise of no collapse, which matches with the current performance-based seismic assessment procedure.

A multimodal adaptive evolution of the N1 method for assessment and design of r.c. framed structures

  • Lenza, Pietro;Ghersi, Aurelio;Marino, Edoardo M.;Pellecchia, Marcello
    • Earthquakes and Structures
    • /
    • 제12권3호
    • /
    • pp.271-284
    • /
    • 2017
  • This paper presents a multimodal adaptive nonlinear static method of analysis that, differently from the nonlinear static methods suggested in seismic codes, does not require the definition of the equivalent Single-Degree-Of-Freedom (SDOF) system to evaluate the seismic response of structures. First, the proposed method is formulated for the assessment of r.c. plane frames and then it is extended to 3D framed structures. Furthermore, the proposed nonlinear static approach is re-elaborated as a displacement-based design method that does not require the use of the behaviour factor and takes into account explicitly the plastic deformation capacity of the structure. Numerical applications to r.c. plane frames and to a 3D framed structure with inplan irregularity are carried out to illustrate the attractive features as well as the limitations of the proposed method. Furthermore, the numerical applications evidence the uncertainty about the suitability of the displacement demand prediction obtained by the nonlinear static methods commonly adopted.

Optimization of static response of laminated composite plate using nonlinear FEM and ANOVA Taguchi method

  • Pratyush Kumar Sahu;Trupti Ranjan Mahapatra;Sanjib Jaypuria;Debadutta Mishra
    • Steel and Composite Structures
    • /
    • 제48권6호
    • /
    • pp.625-639
    • /
    • 2023
  • In this paper, a Taguchi-based finite element method (FEM) has been proposed and implemented to assess optimal design parameters for minimum static deflection in laminated composite plate. An orthodox mathematical model (based on higher-order shear deformation plate theory and Green-Lagrange geometrical nonlinearity) has been used to compute the nonlinear central deflection values of laminated composite plates according to Taguchi design of experiment via a self-developed MATLAB computer code. The lay-up scheme, aspect ratio, thickness ratio and the support conditions of the laminated composite plate structure were designated as the governable design parameters. Analysis of variance (ANOVA) is used to investigate the effect of diverse control factors on the nonlinear static responses. Moreover, regression model is developed for predicting the desired responses. The ANOVA revealed that the lay-up scheme alongside the support condition plays vital role in minimizing the central deflection values of laminated composite plate under uniformly distributed load. The conformity test results of Taguchi analysis are also in good agreement with the numerical experimentation results.

내진성능평가를 위한 다자유도 교량의 수정 비선형 등가정적해석법 (Modified Nonlinear Static Pushover Procedures of MDOF Bridgesfor Seismic Performance Evaluation)

  • 조창근;김영상;배수호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권4호
    • /
    • pp.175-184
    • /
    • 2006
  • 다자유도의 교량에 횡방향 지진하중을 받는 경우, 교량의 내진성능설계 및 성능평가를 위한 두 가지 비선형 등가 정적해석절차를 제시하였다. 빌딩구조물에 대한 FEMA-273의 변위계수법과 ATC에서 채택하고 있는 역량스펙트럼법을 개선하여 다자유도 연속교량의 내진성능평가에 적용토록 제시하였다. 수정된 두 방법들에 대한 적합성을 시간이력 동적해석과 비교토록 하였다. 다자유도 교량의 교축직각방향 관성력 분포를 합리적으로 반영하기 위하여, 수평방향 지진하중의 분포형태에 따른 모드 및 스펙트럴 하중분포를 적용토록 하였다. 철근 콘크리트 교각 부재는 하중-기초법에 의한 비선형 층상화 골조 유한요소 모델을 사용하여 교량 구조물을 모델링 하였다.

SAS 반응기의 구조 안전성 평가 연구 (Study for Accessment of Structural Stability of SAS Reactor)

  • 이은우;정의동;김윤춘;김종배
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.43-49
    • /
    • 1995
  • Sasol Advanced Synthol Reactor was divided into two chambers by grid plate perforated with diffuser holes. The reactor has high stress level beacuse of membrane stress due to internal pressure, thermal stress due to temperature difference and local stress due to structural discontinuity at the juncture of grid plate and shell. Moreover, geometric nonlinear behaviors may appear in the grid plate because of pressure difference between two chambers. In order to survey the stress level and geometric nonlinear behaviors around grid plate, heat transfer analysis, linear static analysis and geometric nonlinear analysis were performed using NISA II developed by EMRC. This paper demonstrates the result of accessment for linear static and geometric nonlinear analysis under various load combinations.

  • PDF

내진성능평가를 위한 비선형 직접스펙트럼법의 특성 (The Properties of a Nonlinear Direct Spectrum Method for Estimating the Seismic Performance)

  • 강병두;김재웅
    • 한국지진공학회논문집
    • /
    • 제6권4호
    • /
    • pp.65-73
    • /
    • 2002
  • 성능에 기초한 설계법에서는 비선형 응답산정이 필수적이며, 이를 위한 방법으로는 비선형시각이력해석법, 비선형 정적해석법, 비선형 효과를 고려한 등가선형해석법 등이 있다. 일부 규준에서는 pushover곡선으로부터 작성한 성능스펙트럼과 선형 응답스펙트럼으로부터 작성한 요구스펙트럼으로 이루어진 능력스펙트럼법을 제안하고 있다. 이 방법은 개념적으로는 간단하나 반복과정이 요구되며, 부정확한 결과를 산출하는 경우가 많다. 이에 따라 시행착오적인 등가선형 스펙트럼대신 비선형스펙트럼을 사용하는 방법들에 대한 연구들이 진행되고 있다. 비선형 요구스펙트럼은 표준적 선형 설계스펙트럼으로부터 결정될 수 있으며, 이 방법은 등가선형의 경우보다는 계산과정이 대폭 줄어들기는 하나 아직도 다소의 연산과정이 요구된다. 따라서 본 연구에서는 다자유도계의 구조물에 대한 pushover곡선으로부터 구조물의 진동주기와 항복강도를 구한 다음, 일련의 계산과정을 거치지 않고도, 직접적으로 비선형 최대응답을 구할 수 있는 비선형 직접스펙트럼법(NDSM)을 제시하극 집중질량계의 MDF(다자유도계) 모델에 대해 다양한 지진기록과 제하강성저하지수를 변수로 하여 NDSM의 적용성과 신뢰성을 평가하고자 한다. 본 연구의 결론은 다음과 같다. 1) 다자유도계 구조물에 대한 비선형 직접스펙트럼법에 의한 최대변위 응답은 비선형 시각이력해석법에 의한 응답과 거의 일치하므로 실용적인 방법으로 사료된다. 2) 비선형 직접스펙트럼법과 비선형 시각이력해석에 의해 산정된 죄상층 변위 결과를 비교하면, 항복후강성계수가 0.1, MAD(modal adaptive distribution)에 의한 수평정적하중분폰 그리고 제하강성저하지수가 0.2~O.3일 때 평균오차가 가장 줄어드는 것으로 나타났다.

Three-dimensional limit analysis of seismic stability of tunnel faces with quasi-static method

  • Zhang, B.;Wang, X.;Zhang, J.S.;Meng, F.
    • Geomechanics and Engineering
    • /
    • 제13권2호
    • /
    • pp.301-318
    • /
    • 2017
  • Based on the existing research results, a three-dimensional failure mechanism of tunnel face was constructed. The dynamic seismic effect was taken into account on the basis of quasi-static method, and the nonlinear Mohr-Coulomb failure criterion was introduced into the limit analysis by using the tangent technique. The collapse pressure along with the failure scope of tunnel face was obtained through nonlinear limit analysis. Results show that nonlinear coefficient and initial cohesion have a significant impact on the collapse pressure and failure zone. However, horizontal seismic coefficient and vertical seismic proportional coefficient merely affect the collapse pressure and the location of failure surface. And their influences on the volume and height of failure mechanism are not obvious. By virtue of reliability theory, the influences of horizontal and vertical seismic forces on supporting pressure were discussed. Meanwhile, safety factors and supporting pressures with respect to 3 different safety levels are also obtained, which may provide references to seismic design of tunnels.