• 제목/요약/키워드: Nonlinear Seismic Response

검색결과 745건 처리시간 0.024초

Investigating the effect of bond slip on the seismic response of RC structures

  • Fallah, Mohammad Mehdi;Shooshtari, Ahmad;Ronagh, Hamid Reza
    • Structural Engineering and Mechanics
    • /
    • 제46권5호
    • /
    • pp.695-711
    • /
    • 2013
  • It is reasonable to assume that reinforced concrete (RC) structures enter the nonlinear range of response during a severe ground motion. Numerical analysis to predict the behaviour therefore must allow for the presence of nonlinear deformations if an accurate estimate of seismic response is aimed. Among the factors contributing to inelastic deformations, the influence of the degradation of the bond slip phenomenon is important. Any rebar slip generates an additional rotation at the end regions of structural members which are not accounted for in a conventional analysis. Although these deformations could affect the seismic response of RC structures considerably, they are often neglected due to the unavailability of suitable models. In this paper, the seismic response of two types of RC structures, designed according to the Iranian concrete code (ABA) and the Iranian seismic code (2800), are evaluated using nonlinear dynamic and static analyses. The investigation is performed using nonlinear dynamic and static pushover analysis considering the deformations due to anchorage slip. The nonlinear analysis results confirm that bond slip significantly influences the seismic behavior of RC structure leading to an increase of lateral deformations by up to 30% depending on the height of building. The outcomes also identify important parameters affecting the extent of this influence.

Deep neural network for prediction of time-history seismic response of bridges

  • An, Hyojoon;Lee, Jong-Han
    • Structural Engineering and Mechanics
    • /
    • 제83권3호
    • /
    • pp.401-413
    • /
    • 2022
  • The collapse of civil infrastructure due to natural disasters results in financial losses and many casualties. In particular, the recent increase in earthquake activities has highlighted on the importance of assessing the seismic performance and predicting the seismic risk of a structure. However, the nonlinear behavior of a structure and the uncertainty in ground motion complicate the accurate seismic response prediction of a structure. Artificial intelligence can overcome these limitations to reasonably predict the nonlinear behavior of structures. In this study, a deep learning-based algorithm was developed to estimate the time-history seismic response of bridge structures. The proposed deep neural network was trained using structural and ground motion parameters. The performance of the seismic response prediction algorithm showed the similar phase and magnitude to those of the time-history analysis in a single-degree-of-freedom system that exhibits nonlinear behavior as a main structural element. Then, the proposed algorithm was expanded to predict the seismic response and fragility prediction of a bridge system. The proposed deep neural network reasonably predicted the nonlinear seismic behavior of piers and bearings for approximately 93% and 87% of the test dataset, respectively. The results of the study also demonstrated that the proposed algorithm can be utilized to assess the seismic fragility of bridge components and system.

Effects of the nonlinear behavior of lead-rubber bearings on the seismic response of bridges

  • Olmos, B.A.;Roesset, J.M.
    • Earthquakes and Structures
    • /
    • 제1권2호
    • /
    • pp.215-230
    • /
    • 2010
  • The main objectives of this work were to investigate the effects of the nonlinear behavior of the isolation pads on the seismic response of bridges with rubber bearings, and to identify when base isolation improved their seismic performance. To achieve these objectives a parametric study was conducted designing a set of bridges for three different soil types and varying the number of spans, span lengths, and pier heights. The seismic responses (accelerations, displacements and pier seismic forces) were evaluated for three different structural models subjected to three earthquakes with different dynamic characteristics. The first represented bridges without base isolation; the second corresponded to the same bridges including now rubber bearings as an isolation system, with linear elastic behavior that shifted the natural period of the bridge by a factor of 2 to 4. In the third model the seismic response of bridges supported on lead-Rubber bearings was studied accounting for the nonlinear behavior of the lead. The results show clearly the importance of the nonlinear behavior on the seismic performance of the bridges.

Seismic response analysis of layered soils considering effect of surcharge mass using HFTD approach. Part II: Nonlinear HFTD and numerical examples

  • Saffarian, Mohammad A.;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • 제6권6호
    • /
    • pp.531-544
    • /
    • 2014
  • Studies of earthquakes over the last 50 years and the examination of dynamic soil behavior reveal that soil behavior is highly nonlinear and hysteretic even at small strains. Nonlinear behavior of soils during a seismic event has a predominant role in current site response analysis approaches. Common approaches to ground response analysis include linear, equivalent linear and nonlinear methods. These methods of ground response analysis may also be categorized into time domain and frequency domain concepts. Simplicity in developing analytical relations and accuracy in considering soils' dynamic properties dependency to loading frequency are benefits of frequency domain analysis. On the other hand, nonlinear methods are complicated and time consuming mainly because of their step by step integrations in time intervals. In part Ι of this paper, governing equations for seismic response analysis of surcharged and layered soils were developed using fundamental of wave propagation theory based on transfer function and boundary conditions. In this part, nonlinear seismic ground response is analyzed using extended HFTD method. The extended HFTD method benefits Newton-Raphson procedure which applies regular iterations and follows soils' fundamental stress-strain curve until convergence is achieved. The nonlinear HFTD approach developed here are applied to some examples presented in this part of the paper. Case studies are carried in which effects of some influencing parameters on the response are investigated. Results show that the current approach is sufficiently accurate, efficient, and fast converging. Discussions on the results obtained are presented throughout this part of the paper.

Large strain nonlinear model of lead rubber bearings for beyond design basis earthquakes

  • Eem, Seunghyun;Hahm, Daegi
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.600-606
    • /
    • 2019
  • Studies on the application of the lead rubber bearing (LRB) isolation system to nuclear power plants are being carried out as one of the measures to improve seismic performance. Nuclear power plants with isolation systems require seismic probabilistic safety assessments, for which the seismic fragility of the structures, systems, and components needs be calculated, including for beyond design basis earthquakes. To this end, seismic response analyses are required, where it can be seen that the behaviors of the isolation system components govern the overall seismic response of an isolated plant. The numerical model of the LRB used in these seismic response analyses plays an important role, but in most cases, the extreme performance of the LRB has not been well studied. The current work therefore develops an extreme nonlinear numerical model that can express the seismic response of the LRB for beyond design basis earthquakes. A full-scale LRB was fabricated and dynamically tested with various input conditions, and test results confirmed that the developed numerical model better represents the behavior of the LRB over previous models. Subsequent seismic response analyses of isolated nuclear power plants using the model developed here are expected to provide more accurate results for seismic probabilistic safety assessments.

해석방법이 현수교 지진응답에 미치는 영향 (Effect of Analysis Method on Seismic Response for a Suspension Bridge)

  • 김호경;유동호;이동일;이재홍
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.422-429
    • /
    • 2003
  • A comparative study was performed for a suspension bridge to grasp the possible differences in seismic responses evaluated by several analytical methods. The items mainly investigated are the linear vs. nonlinear response the response spectrum method vs. the linear dynamic analysis method and the damping ratio and it's implementation into analysis procedures. According to the numerical example, it is found that the seismic responses are considerably affected by the damping-related parameters even though slight differences are shown depending on the response quantities md the exciting directions. On the other hand, it is also confirmed that the seismic responses are less affected by the analysis method-related parameters such as the response spectrum method vs. the linear dynamic analysis method, and the linear and nonlinear analysis method. The response spectrum method is expected to give conservative results for the examined bridge, provided that the design response spectrum in the Korean Highway Design Specification is modified according to the proper damping ratio.

  • PDF

Effect of design spectral shape on inelastic response of RC frames subjected to spectrum matched ground motions

  • Ucar, Taner;Merter, Onur
    • Structural Engineering and Mechanics
    • /
    • 제69권3호
    • /
    • pp.293-306
    • /
    • 2019
  • In current seismic design codes, various elastic design acceleration spectra are defined considering different seismological and soil characteristics and are widely used tool for calculation of seismic loads acting on structures. Response spectrum analyses directly use the elastic design acceleration spectra whereas time history analyses use acceleration records of earthquakes whose acceleration spectra fit the design spectra of seismic codes. Due to the fact that obtaining coherent structural response quantities with the seismic design code considerations is a desired circumstance in dynamic analyses, the response spectra of earthquake records used in time history analyses had better fit to the design acceleration spectra of seismic codes. This paper evaluates structural response distributions of multi-story reinforced concrete frames obtained from nonlinear time history analyses which are performed by using the scaled earthquake records compatible with various elastic design spectra. Time domain scaling procedure is used while processing the response spectrum of real accelerograms to fit the design acceleration spectra. The elastic acceleration design spectra of Turkish Seismic Design Code 2007, Uniform Building Code 1997 and Eurocode 8 are considered as target spectra in the scaling procedure. Soil classes in different seismic codes are appropriately matched up with each other according to $V_{S30}$ values. The maximum roof displacements and the total base shears of considered frame structures are determined from nonlinear time history analyses using the scaled earthquake records and the results are presented by graphs and tables. Coherent structural response quantities reflecting the influence of elastic design spectra of various seismic codes are obtained.

지진하중에 의한 구조물의 비선형 거동 예측 (Prediction of Nonlinear Seismic Response)

  • 김희중
    • 한국강구조학회 논문집
    • /
    • 제8권4호통권29호
    • /
    • pp.77-84
    • /
    • 1996
  • The structural members under seismic loading actually show inelastic behavior, so the inelastic responses should be calculated for the seismic design of structures or estimating the structural damage level. Although direct time history analysis may calculate the exact dynamic nonlinear responses for given ground motions, this approach involves a high computational cost and long period. Therefore, it should be developed the approach to estimate nonlinear responses for the practical purpose. The artificial earthquake accelerograms were generated to obtain the smoothed responses spectra, and the samples of generated accelerogram for each seismic event was used to examine average nonlinear response spectra. The stabilized response spectra for each earthquake event was used to evaluate the effects of various yield strength ratios, damping values and nonlinear hysteretic models. The approach, which can simply predict the nonlinear seismic responses of structures, was shown in this study.

  • PDF

응답변위법에 의한 터널의 내진해석 (Seismic Analysis of Tunnel Response by Response Displacement Method)

  • 윤세웅;신종호;박두희
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.457-462
    • /
    • 2009
  • In this study, seismic analysis is performed using simplified method, analytical solution and numerical analysis based on one-dimensional seismic site response analysis. The results show that analytical solution of tunnel response is predicted more conservative than numerical solution. And simplified method is not appropriate for seismic analysis of tunnel response. In addition, it is reasonable to determine shear-modulus reduction ratio performing seismic site response analysis to consider ground nonlinear-behavior.

  • PDF

교량의 지진거동에 미치는 영향인자에 관한 연구 (A Study of influence factors on the bridge seismic behavior)

  • 최종만;국승규;김준범;정동원
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.372-379
    • /
    • 2005
  • The earthquake resistant design concept allows the nonlinear behavior of structures under the design earthquake. Therefore the response spectrum method provided in most codes introduces the response modification factors to consider the nonlinear behavior in the design process. For bridges, the response modification factors are given according to the ductility as well as the redundancy of piers. In this study, among influence factors on the nonlinear seismic behavior, the randomness of artificial accelerograms simulated with different durations, the pier ductility represented by the inelastic behavior characteristic curve and the regularity represented by pier heights are selected. The influence of such factor on the seismic behavior is investigated by comparing response modification factors calculated with the nonlinear time step analysis.

  • PDF