• Title/Summary/Keyword: Nonlinear PID Controller

Search Result 243, Processing Time 0.025 seconds

Model Reference Adaptive Control of the Pneumatic System with Load Variation (부하 변동 공압계의 모델 기준 적응제어)

  • Oh, Hyeon-il;Kim, In-soo;Kim, Gi-bum
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.57-64
    • /
    • 2015
  • In this paper, a model reference adaptive control (MRAC) scheme is applied for the precise and robust motion control of a pneumatic system with load variation. The reference model for MRAC is designed systematically using linear quadratic Gaussian control with loop transfer recovery (LQG/LTR). The sigmoid function of inverse velocity is used to compensate for the nonlinear friction force between the sliding parts. The experimental results show that MRAC effectively overcame the limit of the PID controller when there was unknown disturbance, including abrupt load variation and model uncertainty in the pneumatic control system.

퍼지 제어기를 이용한 모형 헬리콥터의 제어에 관한 연구

  • 신광근;오준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.173-177
    • /
    • 1992
  • The Helicopter has a lot of flight modes. The most characteristic flight mode is Hovering. It enables the helicopter to be used in many situations. However, a helicopter has nonlinear dynamics so its mathematical modeling is very difficult. Hence it is not easy to control helicopter in hover. In this paper, RC model helicopter is selected as a plant. To stabilize the behavior of RC model helicopter, Fuzzy alogrithm is used as a controller and one camera is used as a sensor. To get proper Information from camera Image, three characteristic points are attatched to the helicopter and a position recognition algorithm is developed. Experiments are performed to stabilize 3 rotational motions synchronousely with fuzzy control algorithm. As a result, Fuzzy control represents better performances than the conventional PID control.

Design of Receding Horizon Control for Boiler-Turbine Systems (보일러-터빈 시스템을 위한 이동구간 예측제어기 설계)

  • Lee, Young-I.;Lee, Gi-Won
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.441-445
    • /
    • 1997
  • In this paper, we suggest a design scheme of receding horizon predictive control(RHPC) for boiler-turbine systems whose dynamics are given in nonlinear equations. RHPC is designed for linear state space models which are obtained at a nominal operating point of the boiler-turbine system. In this consideration, the boiler is operated in a sliding pressure mode, in which the reference value of drum pressure is changing according to the electrical power generation. The reference values of the system outputs are prefiltered before they are fed to the RHPC in order to compensate the linearization errors. Simulation results show that the proposed controller provides acceptable performances in both of the cases of 'steep and small changes' and 'slow and large changes' of power demand and yields the effect of modest coordination of conventional PID schemes such as boiler-following and turbine-following control.

  • PDF

Application of Coefficient Diagram Method for Multivariable Control of Overhead Crane System

  • Tantaworrasilp, A.;Benjanarasuth, T.;Ngamwiwit, J.;Komine, N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2240-2245
    • /
    • 2003
  • In this paper, the controller design by coefficient diagram method (CDM) for controlling the trolley position, load-swing angle and hoisting rope length of the overhead crane system simultaneously is proposed. The overhead crane system is a MIMO system consisting of two inputs and three outputs. Its mathematical model is nonlinear with coupling characteristics. This nonlinear model can be approximated to obtain a linear model where the first input mainly affects the trolley position and the load-swing angle while the second input mainly affects the hoisting rope length. In order to utilize the CDM concept for assigning the controllers, namely PID, PD and PI controllers separately, the model is approximated to be three transfer functions in accordance with trolley position, the load-swing angle and the hoisting rope length controls respectively. The satisfied performances of the overhead crane system controlled by the these controllers and fast rejection of the disturbance effect occurred at the trolley position are shown by simulation and experimental results.

  • PDF

Multi-function Control of Hydraulic Variable Displacement Pump with EPPR Valve (전자비례감압밸브를 이용한 가변용량형 유압펌프의 다기능 제어)

  • Jung, Dong-Soo;Kim, Hyong-Eui;Kang, E-Sok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.160-170
    • /
    • 2006
  • If hydraulic pump controlled by mechanical type regulator has more than one control function, the construction of regulator will be very complicated and control performance falls drastically. It is difficult to have more than one control function for hydraulic pump controlled by electronic type hydraulic valve due to the inconsistency of controllers. This paper proposes a multi-function control technique which controls continuously flow, pressure and power by using EPPR(Electronic Proportional Pressure Reducing) valve in swash plate type axial piston pump. Nonlinear mathematical model is developed from the continuity equation for the pressurized control volume and the torque balance for the swash plate motion. To simplify the model we make the linear state equation by differentiating the nonlinear model. A reaction spring is installed in servo cylinder to secure the stability of the control system. We analyze the stability and disturbance by using the state variable model. Finally, we review the control performances of flow, pressure and power by tests using PID controller.

Consideration to the Stability of FLC using The Circle Criterion (Circle Criterion을 이용한 FLC의 안정도에 대한 고찰)

  • Lee, Kyoung-Woong;Choi, Han-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.525-529
    • /
    • 2009
  • Most of FLC received input data from error e and change-of-error e' with no relation with system complexity. Basic scheme follows typical PD and PI or PID Controller and that has been developed through fixed ME In this paper, We studied the relationship between MF and system response and system response through changing Fuzzy variable of consequence MF and propose the simple FLC using this relationship. The response of FLC is changed according to the width of Fuzzy variable of consequence MF. As changing the Fuzzy variable of consequence MF shows various nonlinear characteristic, we studied the relation between response and MF using analytical method. We designed the effective FLC using three-variable MF and nine rules and took simulation for verification. In this study, we propose the method to design system with FLC in stability point which is an impotent characteristic of designing system. The circle criterion which is adapted to analysis the nonlinear system is put to use for proposed method. Since SISO FLC has a time-invariant and odd characteristic we can use the critical point not disk which is generally used to determine the stability in the circle criterion, to determine the stability. Using this, we can get the maximum critical point plot of SISO FLC with changing the consequence fuzzy variables. The predetermined critical point plot of FLC can be used to decide the region of the system to be stable. This method is effectively used to design the SISO FLC.

Homing Loop Design for Missiles with Strapdown Seeker (스트랩다운 탐색기 기반 호밍루프 설계)

  • Hong, Ju-Hyeon;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.317-325
    • /
    • 2014
  • For a missile with a strapdown seeker, line-of-sight rate for guidance is obtained by compensating the look angle rate from the strapdown seeker by the body angular rate from rate gyros. However, the body angular rate from rate gyros has different signal properties when it compared to the body angular rate implicitly included in the look angle rate. Typically this discrepancy causes instability of homing loop. In this paper, we propose a design method of homing loop where seeker delay is compulsively placed in the output signal of the rate gyros for accordance of both body rates. Also, PID control loop is considered for obtaining stabilized guidance command even though uncertainties of seeker delay is associated. The stability analysis for the linear homing loop before and after the compensation has been done. The stability and performance of the designed terminal homing loop is verified through full nonlinear 6-DOF simulations.

An adaptive controller with fuzzy compensator for nonlinear time-varying systems (비선형 시변 시스템을 위한 퍼지 보상기를 가진 적응 제어기)

  • Park, Geo-Dong;Jeon, Wan-Su;Kim, Jong-Hwa;Lee, Man-Hyeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.149-155
    • /
    • 1997
  • 본 논문에서는 비선형 시변 시스템을 제어할 경우 제어시스템의 안정성을 보장하고 성능을 향상시키기 위한 새로운 적응제어 구조를 전개하였다. 주어진 플랜트가 선형 시불변이라는 가정하에 표준 기준 모델 적응제어기가 적용될 경우 발생되는 출력오차는 플랜트의 비선형 시변특성으로 인하여 점근적으로 0에 수렴되지 않는다. 이때 미지의 출력오차를 점근적으로 0에 수렴시키는 방법으로 퍼지보상기를 사용하였으며 결과적으로 플랜트의 비선형 시변 특성을 보상하는 효과를 얻을 수 있었다. 퍼지 보상기로는 출력오차등의 조건에 따라 이득이 변하는 퍼지 PID 보상기를 도입하여 안정하게 설계되도록 노력하였다. 또한 출력오차를 점근적으로 0에 수렴시키는 것은 표준 기준 모델 적응제어기 내부의 모든 파라미터와 신호가 유한하게 됨을 의미하기 때문에, 제어시스템 전체의 안정도를 보장할 뿐만 아니라 결과적으로 과도응답 성능을 향상시킬 수 있게 되었다. 몇가지 예제를 대상으로 시뮬레이션을 수행하고 그 결과를 분석함으로써 비선형 시변 시스템을 제어할 경우 본 논문에서 전개된 새로운 적응제어 구조의 타당성을 확인하였다.

  • PDF

Performance Enhancement of Motion Control Systems Through Friction Identification and Compensation (마찰력 식별과 보상을 통한 운동제어 시스템의 성능 개선)

  • Lee, Ho Seong;Jung, Sowon;Ryu, Seonghyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.1-8
    • /
    • 2020
  • This paper proposes a method for measuring friction forces and creating a friction model for a rotary motion control system as well as an autonomous vehicle testbed. The friction forces versus the velocity were measured, and the viscous friction, Coulomb friction, and stiction were identified. With a nominal PID (proportional-integral-derivative) controller, we observed the adverse effects due to friction, such as excessive steady-state errors, oscillations, and limit-cycles. By adding an adequate friction model as part of the augmented nonlinear dynamics of a plant, we were able to conduct a simulation study of a motion control system that well matched experimental results. We have observed that the implementation of a model-based friction compensator improves the overall performance of both motion control systems, i.e., the rotary motion control system and the Altino testbed for autonomous vehicle development. By utilizing a better simulation tool with an embedded friction model, we expect that the overall development time and cost can be reduced.

Modal Analysis and Velocity Control of Bowl Parts Feeder Activated by Piezoactuators (압전작동기로 구동 되는 보울 파트 피더의 모드 해석과 이송 속도 제어)

  • Lee, Dong-Ho;Choe, Seung-Bok;Kim, Jae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.839-847
    • /
    • 2000
  • This paper presents modal analysis and mean conveying velocity (M.C.V.) control of bowl parts feeder activated by piezoactuators. Bowl parts feeders are being widely used in many industry fields for automatic assembly line. In general, the electromagnet has been and being used as exciting actuator of these vibratory bowl feeders. However, because of complexity of its mechanism and limited capability of the electromagnet actuator, there exist various impending problems such as severe noise, nonlinear motion of parts, passive characteristics and so forth. As one of solutions for these problems, piezoelectric actuators as new actuating technology have been proposed recently to excite the bowl parts feeder. In this paper, modal analysis of the proposed model has been performed to examine the modal characteristics of the model by using commercial FEM software and modeling with respects to MCV is constructed. Finally, MCV of the parts is to be controlled to track the desired one with PID controller.