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An Adaptive Controller with Fuzzy
Compensator for Nonlinear Time—Varying Systems
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I . Introduction

When uncertain parameters are contained in a con-
trolled system or parameters are unknown, it is not easy
to design a suitable controller using conventional control
methods which necessitate complete mathematical model,
because of the deficient model information. In order to
overcome this problem a new method named as adaptive
control appeared. Adaptive control is the method which
updates control parameters used to generate control input
in a way that the output of the unknown plant follows
that of a reference model so that the output error goes
to zero asymptotically.

Recently, new adaptive control methods have been
developed and their interest are concentrated in per-
formance improvement such as transient response and
steady state responsel[l] in addition to stability. Since the
standard model reference adaptive control{MRAC) scheme
has bad transient hehavior when bounded disturbances
are present, modified MRAC schemes[2 4] had been
proposed to improve the transient response. Zhihua Qu et
al. proposed model reference robust control{MRRC)
scheme{5] which introduced the concept the robust con-
trol into the MRAC in order to cope with uncertainties
and slow-varying nonlinearities. However, since these
modified schemes have been developed through mathe-
matical modifications and structural modifications in the
standard structure, there still remain some problems such
as mathematical complexity and difficulty in the proof of
stability for applications. Especially in case a plant is
modeled as highly nonlinear and/or time-varying system,
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transient response,

those schemes cannot be applied in order to assure
global stability and to improve performance of it, because
they cannot satisfy

several assumptions of adaptive

control schmes based on the linear time-invariant
assumption.
Therefore, in this paper, a new adaptive control

structure, titled as model reference adaptive control with
fuzzy compensator(MRACF), is developed and suggested
in order to improve transient response and intuitively
assure robustness against nonlinearity and time-varying
characteristics of plant under disturbances. The structure
is only the simple form which is combined the standard
MRAC with a fuzzy compensator. The role of the fuzzy
compensator is to compensate the unknown nonlinear
time-varying characteristics of the given plant so that it
forces the output error of the MRAC to converge to zero
asymptotically. As long as the output error is converged
to zero asymptotically by the fuzzy compensator,
parameters and all internal signals of the MRAC are
bounded by the adaptation ability of standard MRAC.
Resultantly the stability of the overall control system is
assured and the transient performance is improved.
Through simulation studies the effectiveness of suggested
MRACEF is proved.

II. Model Reference Adaptive Control with Fuzzy
Compensator{MRACF)

When a controlled system is modeled as a nonlinear
time-varying system, the standard MRAC scheme itself
is not adequate to control it. Therefore, a new control
scheme which is developed now based on the standard
MRAC must have the ability to handle the effect of
modeling error and uncertainty due to model approxi-
mation as a linear time-invariant system. And also it
must handle the effect of disturbances. In order to solve



these problems, a new adaptive control scheme, named as
MRACF, is suggested. Its structure is shown in Fig.l
and has only the simple form which is combined the
standard MRAC with a fuzzy compensator.

The concept of the MRACF is as follows.

1) The MRAC is applied to control
nonlinear time varying plant which is assumed to be
linear time-invariant by using an appropriate reference
model. Hence, the global stability of the control system
would not be assured and the response would naturally
be bad.

2) Then a fuzzy compensator regulates the output error
of the MRAC in the manner that it makes the output
error converge to zero asymptotically. The steady state
output error of the MRAC can be considered to be
caused by the modeling error due to the nonlinear
time-varying characteristics of the given plant, because
the output error must converge to zero asymptotically in
case the given plant is linear time-invariant. Therefore, a
fuzzy control theory must be chosen carefully in the
aspect that the correct design of a fuzzy compensator
means the effective compensation of the nonlinear
time-varying characteristics and the asymptotic behavior
of the fuzzy compensator becomes the basics of the
global stability of the overall control system. The
nonlinear fuzzy PID controller{7] which evolves an asy-
mptotic behavior was adopted to guarantee the asymp-
totic stability of the fuzzy compensator in this paper.

3) As long as the output error of the MRAC con-
verges to zero asymptotically by the fuzzy compensator,
because all the signals and parameters of the MRAC
remain bounded, the overall system can be stable and the
transient response can be improved.

the unknown

AT yalt)
*"Rals)

| Fuzzy Dyal)
Compensator

¥,(8)

Zs)
b R,(s)

Fig. 1. The structure of the MRACF proposed in
this paper.

2.1 The standard MRAC system(6]
If a plant to be controlled is linear time-invariant, it is

represented by the following differential equations.
X, = Ayx,+ byult)
(1

Yp = hpTxtz

h, and b, are n
v R'—R is the

where A, is an (#X#n) matrix,

-vectors, u:R7—R is the input,
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output, and x,:R'—R” is the #u-dimensional state
vector of the plant. The transfer function W (s) of the
plant may be represented as

Zp(s)
4 Rp(s)

Wy(s) = hl(sI—A,) 'b,2 k (2)

W,(s) is strictly proper with Z,(s) a monic Hurwitz
m(<n—1), Rys)

n, and k, a constant parameter. We

polynomial of degree a monic
polynomial of
further assume that only m, =, and the sign of &, are
known.

A reference Model M represents the behavior expected
from the plant when it is augmented with a suitable
controller. The model has a reference input »(# which is
piecewise-continuous and uniformly bounded and an

output  v,(#). The transfer function of the model,

denoted by W, (s), may be represented as

Z,(s)
" Ru(s)

W,(s)=Fk (3)

where Z,(s) and R,(s) are monic Hurwitz polynomials
of degree n—1 and » respectively, and &, is a positive

constant.

2.1.1 The controller structure
The controller is described completely by the differential
equation

w () =Aw (t)+ ¢ u(t)

wo(1) = Awy(8) + £ y,(¢t)

o) 2 /D), of(1), (1), 0l ()] )
[k(2), 8](t), 65(t), 65()]"

w(t) = 0"(Haolt)

p

a(t) =

where  ER'™R, 6,,0:R"—>R"', 6, R'>R,

67,0 R*™=R"! and A is an (n—1)x(n—1) stable

matrix.
The overall system can also be represented as

Xy Ay, 00 (%] |bs ‘
@ (=] 0 A0 ||ol+]|f [67()w(t)]
0, ehl 0 Ao, 0
vy = hix, (5)

The following parameter errors are defined as
WD kKD -k, $o(8) 2 6,()— 65, $,(D=6,() -0}
$2(D) 20:(0) =65, (2D, 0] (D, bo(8), ¢5(H]T.

Then the state can also be written as
x=Ax+b [ Er+s’ol; y,=hlx (6

where x = [x], @/, @]17, k.= [R], 0,017,
A, 0k h] 0,67 b6

Lol At ed) 065 |, b=
onl 0 A

A=

N O
>

—

-
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When ¢(t)=0 that is 6(¢)= 6", (6) also represents the
nonminimal reference model which can be described by
the (3%z—2)th order differential equation

QémczAcxmc+bck‘r; ym:thxmc (8)

where x,.= [ x5, w} w317,
hi(sI=AQ) b= % Wols)

2.1.2 The error equation
The error equation between model and plant may be

expressed as

e(t) = Ace(t) + b, [¢7(Da(t)]
e)(ty=hle(t) )

where e(#) 2 x(t) —x,.(i) and ¢ = y,—v,. The output

error e is given by

al(t) = 1= Wol(s)8T(D) ol ) (10)

2.1.3 The adaptive laws

1) Relative degree #*(=n—m) =1

Because a model can be chosen which has a strictly
positive real transfer function, the parameter error vector
#(t) is updated according to the control law

= 0=—sgn(k,) e,(+)o(t) an

then the state error e(#) and parameter error ¢(¢) are
bounded. Since e, as well as the output of the reference
model are bounded, v, is bounded and () is bounded
so that e(#)—0 as t—o or |e(t)| —0 as t—>oo.
2) Relative degree #">2

case (i) k, known

The augmented error method suggested by Monopoli
can suitably modify the error equation in order to
implement a stable adaptive law. The augmented error
can now be expressed as

ety =97 t)+ 8(1),

8(t) = 0" TEt) — W(s) 8" a(t) (12)

where £(H2W,(s)Iw(H, é=6—8",

0" =16.6,.671, 8"216,6,,671, w'2lwl, v,
wil, and &(¢) is an exponentially decaying signal due

to mitial conditions. The adaptive law having the form

B(1) = —e () Ut) (13)

would suffice to assure stability.
case (ii) %, unknown

Since the feedforward gain k(#) has to be adjusted,
the augmented error &,(¢#) must contain an additional

gain. The augmented error can now be expressed as

k
51:k_:¢T§+¢132+52(f),

88 =22 (6"~ W,()0"'0) (14)

where &= W,(s)lw, k(t)=k,/k,+¢:(£), and 8(¢) is an
exponentially decaying term due to initial conditions.

Adaptive laws for adjusting #(¢) and ¢(¢) are given by

PR R L

o= k) e (15)
po= — — 2

S TN

These adaptive laws assure the global boundedness of all
the signals in the overall adaptive system and that
lg{n e 1( t ) =0.

2.2 Design of a Fuzzy Compensator

In case the given plant is represented by a nonlinear
time-varying system, a compensator is required in order
to compensate the function of the standard MRAC
against modeling error resulted from linearization and
time-varying characteristics. To do this role, a fuzzy
compensator is adopted and the configuration of it is
shown in Fig. 2 suggested in [7]. With three inputs
el(nT), rn(nT), anda,(nT), the structure of the fuzzy

compensator is composed of two independent parallel
fuzzy control blocks which contain fuzzy control rules
and defuzzifier respectively. The incremental output of
the fuzzy compensator is formed by algebraically adding
the two outputs of fuzzy control blocks.

The notations employed in Fig. 2 are as follows :
ey(nT) = samplingl e, (D] | =1, €1 = GExey(nT)
rnnD= [e,(nT)—ey(nT—DIT
ri = GR*r,(nT)
ay(nT)= [n(nT)—n(aT-T)/T

= [e(nT)—2e)(nT—T)+e(nT—-2T) )/ T*

a; = GA*a\(nT), uy(nT)=du;(nT)+u (nT—T)
duy(nT)= GU+dUy(nT)
dU{nT)=dU{nT)+dUy(nT)

a1 G

=0+ ] fuasy { ] dotussifior Lirgumy

Yol _ & /a(vl) nec GR

T e () fusdifie K unT-T)
9 fuzry defurrifiar udnT}
-% { ] rutes 2 2[4 "
fuzsy Slock 2 haolding
................................ cirenit
wit)
yolt) el ol
Plant

Fig. 2. Configuration of the fuzzy compensator.

2.2.1 Fuzzification algorithms for scaled inputs and outputs
of the fuzzy compensator
The fuzzification algorithms for scaled inputs and
outputs are shown in Fig. 3. The fuzzy set “error” has
two members EP(error_positive) and EN (error_negative)
; the fuzzy set “rate” has two members RP(rate_positive)
and RN(rate_negative) ; the fuzzy set “acc” also has two
members AP(acc_positive) and AN(acc_negative). The



152 MOt - Riset - AAEISS ==2A M3 A M2z 19974

fuzzy set “outputl” has three members OP(output_

positive), OZ(output_zero) and ON(output_negative) for
the fuzzification of incremental output of fuzzy block 1. “f
The fuzzy set “output?” has two members OPM(out-
put_positive_middle) and ONM(output_negative_middle) for

(IC18) | (IC12)1 |(IC11) | (IC17)

the fuzzification of incremental output of fuzzy block 2.

membership

ENRN,AN 1.0

EP.RP AP

L 0 L e, na
(a) The inputs of fuzzy compensator.

membership
ON 1.0| 0z [0)3

05

~-L 0 L
outputl

(b) The fuzzified outputl of fuzzy block 1.

membership

ONM 1.0 OPM

L/2 0 -L/2
output2

(c) The fuzzified output? of fuzzy block2.

Fig. 3. Fuzzification algorithms for
pensator.

fuzzy com-

2.2.2 Fuzzy rules and fuzzy logics for evaluation of the
fuzzy rules

For fuzzy block 1, four linear fuzzy rules are given as;

(R1); : if error = EP and rate = RP then cutput = ON
(R2); : if error = EP and rate = RN then output = OZ
(R3); : if error = EN and rate = RP then output = OZ

(R4); : if error = EN and rate = RN then output = OP
For fuzzy block 2, four linear fuzzy rules are given as,
(R1)2 : if rate = RP and acc = AP then output = ONM
(R2), : if rate = RP and acc = AN then output = OPM
(R3); : if rate = RN and acc = AP then output = ONM
(R4); : if rate = RN and acc = AN then output = OPM
The eight different combinations of scaled error and
scaled rate constituting inputs to the rules are shown
graphically in Fig. 4 for the block 1. For the block 2, the
eight different combinations of scaled rate and scaled
acc are shown in Fig. 5[7].

2.2.3 Defuzzification algorithm

The defuzzified output of a fuzzy set is defined as the
center of area method.

1

> ( membership of member) * ( value of member)

dU = (16)
> ( memberships)

{IC4n [(IC3)

(IC13), acion |,
acs)NAIc2), el
L |(1c6), 10CIH L
(IC14); |, 1C7) |acsn\ 1€

-L
(IC19)1| (IC15) |(IC16) | (IC20),

Fig. 4. Possible input combinations of e] and #
for fuzzy block 1.

+
n

(IC18)2| (IC12)2 I(ICll)z (IC17)2

{IC4)2|(IC3)

(IC13)s acio. | ,
(IC5)2N\ | AC2)e "
-L {a1ce)y” |0CL:IL
(IC14)2 | UCT): |(1c8)\| (1C9)2

-L
(IC19)2| (IC15)2 {(IC16)2 | (IC20)2

Fig. 5. Possible input combinations of 7] and a; for
fuzzy block 2. '

When the above method is applied to each fuzzy control
block, the defuzzied output of the fuzzy block 1 at
sampling time »nT, dU;(xnT), can be described by the
following two equations.

If GR*|r(nT) < GE*ley(nT)| < L,

_ __05%L
aU(nT) = = 5 = Chnlon Tl

* [GE*e;(nT)+ GR*r (nT)] an
If GE*ley(nT)| < GR*In(nT)| < L,

05
AUy(nD) = = S =GR (n T

* [GExe(nT)+GR*r (nT)] (18)
The defuzzied output of the fuzzy block 2 at sampling

time »n7T, dU;(nT), can be given by the following two
equations.

If GA*lai(nTH < GR*|r(nT)| < L,

- 025«
dUZ/(nﬂ~_ 2L_GR*|7_](n]-i)| [A*a](nﬂ] (19)

If GR*|r(nD < GAx*lay(nD| < L,

- 0.25*%L
adUy(nT) = 2L —GAXa,(n T [GA*a, (nD)] (20)
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Conclusively, the incremental output of fuzzy compensator
can be divided into four different forms according to the
following conditions :

D If GR*|r(nT)| £ GE*le(nT) < L and

GA *la|(nT)| < GR*|ri(nT) < L,

0.5*xL*GU
dufnT)=— 5L~ GErle,(n ) [GExe(nT)+GR*r (nT)]
___0.25+L*GU
~ L= GR¥ 7 (T [GA*a, (nD)] @n

2) If GR*|ri(nD| < GE*le,(nT)| < L and
GR *|r(nT)| < GA*lg(nT) < L,

= 0.5*L*GU __
dufn D) = = 57~ Chalo (w Dy L CE*e(nT) + GR¥ 7, (n )]

0.25+L*GU :
T 2L GAwa,(n Y] [ CA*a (nT)] 22

3y If GExle/(nT) < GR*|n(nT)| < L and
GA *lay(nT)| < GR*|r(nT)| < L,

du(nT)=— f%[ GExey\(nT) + GR*7, (nT)]

__0.25xL*GU

2L — GR*|r,(nT)}

4) If GExle(nT| < GR*|rn(nT)| < L and
GR *|ri(nT)| < GA*la;(nT)| < L,

[GA*a, (nT)] (23)

— 0.5*L*GU
dufnT)=— 5L —GR¥ 7.(nT)] [GE*e,(nT)+GR*r, (nT)]
___0.25*L*GU
5L — GA¥a,(nT)] [GA*a, (nT)] (24)

If scaled error, rate and/or acc are not within the
interval [—L, L], the incremental output of the fuzzy
compensator is obtained from the combinations of
incremental outputs for the fuzzy blocks given in Table 3
and 4 in [7].

In this section, the model reference adaptive controller
with fuzzy compensator(MRACF) was developed. The
role of a fuzzy compensator is to compensate the effect
of the nonlinear time-varying characteristics of the given
plant. And the fuzzy compensator discussed thus far has
the structure which can control the nonlinear or
uncertain systems in an asymptotically stable fashion.
But this structure by itself cannot be applied to control
an unstable plant because it needs bounded output data
of the given plant in order to decide fuzzification
algorithms for the fuzzy inputs. Here is the idea to
combine the MRAC with the fuzzy compensator in order
to control the plant which is unstable
time-varying. The unstable characteristics can be
controlled to be stable by the MRAC which is assumed
to be applied to a linear time-invariant subsystem of the
plant, Afterwards the nonlinear time-varying charac-
teristics can be compensated by the fuzzy compensator
through the regulation of the output error in a way that
the fuzzy compensator makes the output error converge
to zero asymptotically. Therefore, as long as the fuzzy
compensator is designed correctly, the output error
converges to zero asymptotically. Then all the internal
signals and parameters in the MRAC remain bounded.

nonlinear

Conclusively the global boundedness of the overall
control system can be achieved through the following
theorem.

Theorem 1 :If the fuzzy compensator discussed in this
paper is designed correctly for the a nonlinear
time-varying plant in a way that it makes the output
error of the MRAC converge to zero asymptorically, all
the signals and parameters in the MRAC remain bounded
and the MRACF is uniformly asymptotically stable.

Proof : The fuzzy control theory adopted in this paper
is the theory which assures the asymptotic stability of a
fuzzy control system if design factors are selected
apprpriately. Therefore, as long as the fuzzy compensator
makes the output error of the MRAC converge to zero
asymptotically, }Ln; e() =0 always holds true. It

means the following inequality is satisfied.
t
ltl_r_gfo ley(n) | dr < oo (25)

because the contradiction of (25) is the contradiction of
the asymptotic convergence of e,(#). And (25) means

also | e(f) | <o so that e € L'NLT. From (10) the
state error e(# satisfies e(He L'MN L™ because W, (s)
is a strictly positive real function so that e(¥) has the
same growth rate as e (). As e (#) converges to zero,
the plant output v, remains bounded because v, is

bounded. This means the boundedness of u« and (8,
that is e(d =L”. Therefore, all the signals and para-
meters remain bounded.

Conclusively, the MRACF is uniformly asymptotically
stable and it can improve the performance of the
nonlinear time-varying plant. [ ]

II. Simulation and results

When the plant is nonlinear and/or time-varying in the
presence of bounded disturbance, simulations were
executed for the standard MRAC, MRACF, and fuzzy
control scheme adopted in this paper in order to compare
the results.
In simulations, the fixed controller parameters A and ¢
in (11) were chosen as A=-1 and #=1. The high fre-
quency gain k, was assumed to be known and the
control parameters 8,(#), 8,(H and 6,(#) were adjusted.

Simulation 1:In case the plant is nonlinear in the
presence of bounded disturbance

plant : y=y+0.5y*+ ututv

model : y=—y+~r
(¢)=5cos t + 15cos5¢

disturbance : o(#) =0.2sin#+0.5siny,+ y5cos ¢

Simulation 2 : In case the plant is time-varying in the
presence of bounded disturbance

plant : y=—y+(2.0+sint)y+u+uto

input :

model | y=-—y+r
input © #{(¢)=5.0cos t+15cos5¢
disturbance : ()= 0.5sint+e; cos2¢+0.5¢5cos ¢
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lime(sec)

Fig. 6. Comparison of output errors between the
reference model and (a) the standard MRAC
(b) fuzzy control only (c) the MRACF.

4

al ]

Jl V(a)
g NN c) ]
g% |

-1} b)

-2}

.3t

“o 3 4 6 8 10

time(sec)

Fig. 7. Comparison of output errors between the
reference model and (a) the standard MRAC
(b) fuzzy control only {(c) the MRACF.

Simulation 3 : In case the plant is nonlinear and time-
varying in the presence of bounded disturbance

plant © y=3y+ 2.0+ cos)y’ + ututv
model © y=—y+r

input :  #(¢)=>5cos ¢+ 20cos5¢

disturbance : o(¢#)=0.5sint+e; cos2t+0.5¢ cos ¢
4
al
2l (a)

-

output error
o

-3F 1

o 2 4 3 8 0
time(sec)

Fig. 8 Comparison of output errors between the
reference model and (a) the standard MRAC
(b) the fuzzy control only (¢) the MRACF.

The above simulations were executed using the inputs
which were persistently excited. The persistent excitation
input means that the reference input for the plant is
time-varying and unknown so that the tracking control
should be accomplished.

MOl - AIS8t - ANEisst =28 M3 & K23z 19974

As shown in Fig. 6 ~ Fig. 8, the output error e; does

not converge to zero as#t—cc in the standard MRAC.
While the output erros in the MRACFKF and the fuzzy
control scheme converge to zero as #—oo, but it is seen
that the response of the MRACF is better than that of
the fuzzy control scheme. For this reason it is naturally
considered that the compensation ability of the fuzzy
compensator was added to the adaption ability of the
standard MRAC. As shown in Fig. 9, the parameter error
of the MRAC is not bounded as #-»oc and the increasing
rate is high, but the parameter error of the MRACF is
nearly constant in spite of the nonlinear and time-
varying characteristics, so that the MRACF control
system is marginally stable.

o . . . _—
8 ]
T+ y

S el (a) i

g5t

B w

5 3 ]
2 ()

e L e
4 4
% 5 10 15 20
time(sec)

Fig. 9. The norm of the parameter error vector (a)
the standard MRAC (b) the MRACF.

Conclusively, it was proved that the MRACF scheme
is adequate to control a nonlinear time-varying and
unknown plant. And also it was proved that the fuzzy
compensator played a important role of supervising and
compensating the standard MRAC scheme.

IV. Conclusion

In this paper, a MRACF scheme was suggested in
order to improve performance and assure stability of the
overall control system for nonlinear and time-varying
systems with unknown disturbances. The scheme im-
proved performance by using the fuzzy compensator
supervising the MRAC and assured global stability in the
sense that the output error and all internal signals were
bounded by the fuzzy compensator, while the fuzzy
compensator should be designed stably.

The MRACF scheme exhibits better performance than
those of the standard MRAC and only the fuzzy control
scheme adopted in this paper.

The requirement of the MRACF for the prior in-
formation about the plant is equal to that of the standard
MRAC. And the fuzzy compensator adopted in this paper
has analytical control law, so that the MRACF scheme
can be easily applied to nonlinear time-varying systems
and can naturally improve performance.
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