• 제목/요약/키워드: Nonlinear Numerical analysis

검색결과 2,022건 처리시간 0.032초

Nonlinear numerical analyses of a pile-soil system under sinusoidal bedrock loadings verifying centrifuge model test results

  • Kim, Yong-Seok;Choi, Jung-In
    • Geomechanics and Engineering
    • /
    • 제12권2호
    • /
    • pp.239-255
    • /
    • 2017
  • Various centrifuge model tests on the pile foundations were performed to investigate fundamental characteristics of a pile-soil-foundation system recently, but it is hard to find numerical analysis results of a pile foundation system considering the nonlinear behavior of soil layers due to the dynamic excitations. Numerical analyses for a pile-soil system were carried out to verify the experimental results of centrifuge model tests. Centrifuge model tests were performed at the laboratory applying 1.5 Hz sinusoidal base input motions, and nonlinear numerical analyses were performed utilizing a finite element program of P3DASS in the frequency domain and applying the same input motions with the intensities of 0.05 g~0.38 g. Nonlinear soil properties of soil elements were defined by Ramberg-Osgood soil model for the nonlinear dynamic analyses. Nonlinear numerical analyses with the P3DASS program were helpful to predict the trend of experimental responses of a centrifuge model efficiently, even though there were some difficulties in processing analytical results and to find out unintended deficits in measured experimental data. Also nonlinear soil properties of elements in the system can be estimated adequately using an analytical program to compare them with experimental results.

비선형 진동계 정규모드의 수치적 계산 연구 (Research on Numerical Calculation of Normal Modes in Nonlinear Vibrating Systems)

  • 이경현;한형석;박성호;전수홍
    • 한국소음진동공학회논문집
    • /
    • 제26권7호
    • /
    • pp.795-805
    • /
    • 2016
  • Nonlinear normal modes(NNMs) is a branch of periodic solution of nonlinear dynamic systems. Determination of stable periodic solution is very important in many engineering applications since the stable periodic solution can be an attractor of such nonlinear systems. Periodic solutions of nonlinear system are usually calculated by perturbation methods and numerical methods. In this study, numerical method is used in order to calculate the NNMs. Iteration of the solution is presented by multiple shooting method and continuation of solution is presented by pseudo-arclength continuation method. The stability of the NNMs is analyzed using Floquet multipliers, and bifurcation points are calculated using indirect method. Proposed analyses are applied to two nonlinear numerical models. In the first numerical model nonlinear spring-mass system is analyzed. In the second numerical model Jeffcott rotor system which has unstable equilibria is analyzed. Numerical simulation results show that the multiple shooting method can be applied to self excited system as well as the typical nonlinear system with stable equilibria.

Numerical vibration correlation technique analyses for composite cylinder under compression and internal pressure

  • Do-Young Kim;Chang-Hoon Sim;Jae-Sang Park;Joon-Tae Yoo;Young-Ha Yoon;Keejoo Lee
    • Structural Engineering and Mechanics
    • /
    • 제87권5호
    • /
    • pp.419-429
    • /
    • 2023
  • This study conducts numerical analyses of a thin-walled composite cylinder under axial compression and internal pressure of 10 kPa. Numerical vibration correlation technique and nonlinear postbuckling analyses are conducted using the nonlinear finite element analysis program, ABAQUS. The single perturbation load approach and measured imperfection data are used to represent the geometric initial imperfection of thin-walled composite cylinder. The buckling knockdown factors are derived using present initial imperfection and analysis methods under axial compression without and with the internal pressure. Furthermore, the buckling knockdown factors are compared with the buckling test and computation time are calculated. In this study, derived buckling knockdown factors in present study have difference within 10% as compared with the buckling test. It is shown that nonlinear postbuckling analysis can derive relatively accurate buckling knockdown factor of present thin-walled cylinders, however, numerical vibration correlation technique derives reasonable buckling knockdown factors compared with buckling test. Therefore, this study shows that numerical vibration correlation technique can also be considered as an effective numerical method with 21~91% reduced computation time than nonlinear postbuckling analysis for the derivation of buckling knockdown factors of present composite cylinders.

계측 및 수치해석을 통한 터널 라이닝의 균열 원인 연구 (A study on the cracking of tunnel lining by measurement and numerical analysis)

  • 황학;정헌철;김유석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.33-40
    • /
    • 2001
  • In this research, the cracking of tunnel concrete lining was investigated and analyzed through long-term measurement and nonlinear numerical analysis. For one year after the casting of lining, the stresses and strains were measured by the sensors installed in hard rock tunnel lining. The measurements showed that only small stresses which were less than cracking stress occurred in every survey sections regardless of sensor directions. It could be induced that the external load applied to the lining was small or ignorable. Also, it was carried out short-term numerical analysis based on such site condition as ambient temperature, the- degree of overbreak and mold staying period. Long-term numerical analysis based on creep & shrinkage and nonlinear cracking was carried out. The output showed that construction condition and ambient environments could make the lining concrete crack without external loads. The cracks formed in this process does not indicate the structural instability of the tunnel.

  • PDF

Nonlinear dynamic response of MDOF systems by the method of harmonic differential quadrature (HDQ)

  • Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • 제25권2호
    • /
    • pp.201-217
    • /
    • 2007
  • A harmonic type differential quadrature approach for nonlinear dynamic analysis of multi-degree-of-freedom systems has been developed. A series of numerical examples is conducted to assess the performance of the HDQ method in linear and nonlinear dynamic analysis problems. Results are compared with the existing solutions available from other analytical and numerical methods. In all cases, the results obtained are quite accurate.

복합재 적층셸의 비선형 수치해석 및 실험 (Nonlinear Numerical Analysis and Experiment of Composite Laminated Shell)

  • 조원만;이영신;윤성기
    • 대한기계학회논문집
    • /
    • 제17권8호
    • /
    • pp.2051-2060
    • /
    • 1993
  • A finite element program using degenerated shell element was developed to solve the geometric, material and combined nonlinear behaviors of composite laminated shell. The total Lagrangian method was implemented for geometric nonlinear analysis. The material nonlinear behavior was analyzed by considering the matrix degradation due to the progressive failure in the matrix and matrix-fiber interface after initial failure. The result of the geometric nonlinear analysis showed good agreement with the other exact and numerical solutions. The results of the combined analyses considered both geometric and material nonlinear analyses were compared with the experiments in which internal pressure was applied to the filament wound antisymmetric tubes.

준해석적 비선형 설계민감도를 위한 개선된 변위하중법 (Augmented Displacement Load Method for Nonlinear Semi-analytical Design Sensitivity Analysis)

  • 이민욱;유정훈;이태희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.492-497
    • /
    • 2004
  • Three methods for design sensitivity such as numerical differentiation, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis is exact, it is hard to implement for practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable for most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate because its computational cost depends on the number of design variables and large numerical errors can be included especially in nonlinear design sensitivity analysis. Thus semi-analytical method is more suitable for complicated design problems. Moreover semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure for the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and computational technique is proposed, which evaluates the pseudo-load for design sensitivity analysis easily by using the design variation of corresponding internal nodal forces. Errors in semi-analytical design sensitivity analysis are examined and numerical examples are illustrated to confirm the reduction of numerical error considerably.

  • PDF

Nonlinear analysis of contemporary and historic masonry vaulted elements externally strengthened by FRP

  • Hamdy, Gehan A.;Kamal, Osama A.;El-Hariri, Mohamed O.R.;El-Salakawy, Tarik S.
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.611-619
    • /
    • 2018
  • This paper addresses numerical modeling and nonlinear analysis of unreinforced masonry walls and vaults externally strengthened using fiber reinforced polymers (FRP). The aim of the research is to provide a simple method for design of strengthening interventions for masonry arched structures while considering the nonlinear behavior. Several brick masonry walls and vaults externally strengthened by FRP which have been previously tested experimentally are modeled using finite elements. Numerical modeling and nonlinear analysis are performed using commercial software. Description of the modeling, material characterization and solution parameters are given. The obtained numerical results demonstrate that externally applied FRP strengthening increased the ultimate capacity of the walls and vaults and improved their failure mode. The numerical results are in good agreement with the experimentally obtained ultimate failure load, maximum displacement and crack pattern; which demonstrates the capability of the proposed modeling scheme to simulate efficiently the actual behavior of FRP-strengthened masonry elements. Application is made on a historic masonry dome and the numerical analysis managed to explain its structural behavior before and after strengthening. The modeling approach may thus be regarded a practical and valid tool for design of strengthening interventions for contemporary or historic unreinforced masonry elements using externally bonded FRP.

시간영역에서 ISSC TLP의 비선형 응답 특성 (Nonlinear Response Characteristics of the ISSC TLP in Time Domain)

  • 이창호
    • 한국해양공학회지
    • /
    • 제20권5호
    • /
    • pp.30-35
    • /
    • 2006
  • In tire presence of incident waves with different frequencies, there are second order sum and difference frequency wave exciting forces due to the nonlinearity of tire incident waves. Although the magnitude of these nonlinear wave forces are small, they act on TLPs at sum and difference frequencies away from those of the incident waves. So, the second order sum and difference frequency waveexciting forces occurring close to tire natural frequencies of TLPs often give greater contributions to high and law frequency resonant responses. Nonlinear motion responses and tension variations in the time domain are analyzed by solving the motion equations with nonlinear wave exciting forces using tire numerical analysismethod. The numerical results of time domain analysis for the nonlinear wave exciting forces on the ISSC TLP in regular waves are compared with the numerical and experimental ones of frequency domain analysis. The results of this comparison confirmed tire validity of the proposed approach.

Nonlinear Control of General System based on a Model with Coefficients of State-Depended Representation

  • Nakamura, Masatoshi;Zhang, Tao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.76.1-76
    • /
    • 2002
  • This paper addresses a method for nonlinear controller construction for a general nonlinear system with the separation of controller construction and manipulated values generation. The nonlinear system model is firstly expressed with the coefficients of state-depended representation. The nonlinear control is designed without any approximation based on the model with state-depended representation. At the stage of controller implementation for the nonlinear system, the manipulated values are calculated accurately by use of an algorithm of the numerical analysis. The numerical error for calculating the manipulated value can be reduced to zero by selecting the sampling interval being a small val...

  • PDF