• Title/Summary/Keyword: Nonlinear Invariant Attack

Search Result 2, Processing Time 0.021 seconds

On Resistance of Bit Permutation Based Block Cipher against Nonlinear Invariant Attack (비트 순열 기반 블록암호의 비선형 불변 공격 저항성 연구)

  • Jeong, Keonsang;Kim, Seonggyeom;Hong, Deukjo;Sung, Jaechul;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.3
    • /
    • pp.325-336
    • /
    • 2020
  • Nonlinear Invariant Attack is an attack that should be considered when constructing lightweight block ciphers with relatively simple key schedule. A shortcut to prove a block cipher's resistance against nonlinear invariant attack is checking the smallest dimension of linear layer-invariant linear subspace which contains all known differences between round keys is equal to the block size. In this paper, we presents the following results. We identify the structure and number of optimal bit-permutations which require only one known difference between round keys for a designer to show that the corresponding block cipher is resistant against nonlinear invariant attack. Moreover, we show that PRESENT-like block ciphers need at least two known differences between round keys by checking all PRESENT-like bit-permutations. Additionally, we verify that the variants of PRESENT-like bit-permutations requiring the only two known differences between round keys do not conflict with the resistance against differential attack by comparing the best differential trails. Finally, through the distribution of the invariant factors of all bit-permutations that maintain BOGI logic with GIFT S-box, GIFT-variant block ciphers require at least 8 known differences between round keys for the resistance.

Autopilot Design for Agile Missile with Aerodynamic Fin and Thrust Vecotring Control

  • Lee, Ho-Chul;Choi, Yong-Seok;Choi, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.525-530
    • /
    • 2003
  • This paper is concerned with a control allocation strategy using the dynamic inversion which generates the nominal control input trajectories, and autopilot design using the time-varying control technique which is time-varying version of pole placement of linear time-invariant system for an agile missile with aerodynamic fin and thrust vectoring control. Dynamic inversion can decide the amount of the deflection of each control effector, aerodynamic fin and thrust vectoring control, to extract the maximum performance by combining the action of them. Time-varying control technique for autopilot design enhance the robustness of the tracking performance for a reference command. Nonlinear simulations demonstrates the dynamic inversion provides the effective nominal control input trajectories to achieve the angle of attack command, and time-varying control technique exhibits good robustness for a wide range of angle of attack.

  • PDF