• Title/Summary/Keyword: Nonlinear FEA

Search Result 133, Processing Time 0.025 seconds

Simulation-based fatigue life assessment of a mercantile vessel

  • Ertas, Ahmet H.;Yilmaz, Ahmet F.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.835-852
    • /
    • 2014
  • Despite the availability of other transport methods such as land and air transportations, marine transportation is the most preferred and widely used transportation method in the world because of its economical advantages. In service, ships experience cyclic loading. Hence, it can be said that fatigue fracture, which occurs due to cyclic loading, is one of the most critical failure modes for vessels. Accordingly, this makes fatigue failure prevention an important design requirement in naval architecture. In general, a ship structure contains many structural components. Because of this, structural modeling typically relies on Finite Element Analysis (FEA) techniques. It is possible to increase fatigue performance of the ship structures by using FEA in computer aided engineering environment. Even if literature papers as well as rules of classification societies are available to assess effect of fatigue cracks onto the whole ship structure, analytical studies are relatively scarce because of the difficulties of modeling the whole structure and obtaining reliable fatigue life predictions. As a consequence, the objective of this study is to improve fatigue strength of a mercantile vessel against fatigue loads via analytical method. For this purpose, the fatigue life of the mercantile vessel has been investigated. Two different type of fatigue assessment models, namely Coffin-Manson and Morrow Mean stress approaches, were used and the results were compared. In order to accurately determine the fatigue life of the ship, a nonlinear finite element analysis was conducted considering plastic deformations and residual stresses. The results of this study will provide the designer with some guidelines in designing mercantile vessels.

Finite element modeling methodologies for FRP strengthened RC members

  • Park, Sangdon;Aboutaha, Riyad
    • Computers and Concrete
    • /
    • v.2 no.5
    • /
    • pp.389-409
    • /
    • 2005
  • The Finite Element Analysis (FEA) is evidently a powerful tool for the analysis of structural concrete having nonlinearity and brittle failure properties. However, the result of FEA of structural concrete is sensitive to two modeling factors: the shear transfer coefficient (STC) for an open concrete crack and force convergence tolerance value (CONVTOL). Very limited work has been done to find the optimal FE Modeling (FEM) methodologies for structural concrete members strengthened with externally bonded FRP sheets. A total of 22 experimental deep beams with or without FRP flexure or/and shear strengthening systems are analyzed by nonlinear FEA using ANAYS program. For each experimental beams, an FE model with a total of 16 cases of modeling factor combinations are developed and analyzed to find the optimal FEM methodology. Two elements the SHELL63 and SOLID46 representing the material properties of FRP laminate are investigated and compared. The results of this research suggest that the optimal combination of modeling factor is STC of 0.25 and CONVTOL of 0.2. A SOLID 46 element representing the FRP strengthening system leads to better results than a SHELL 63 element does.

Seismic Performance of Concrete Masonry Unit (CMU) Infills in Reinforced Concrete Moment Framing System (철근콘크리트 모멘트 골조시스템에서 조적 끼움벽의 내진성능)

  • Hong, Jong-Kook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.19-26
    • /
    • 2019
  • The masonry infill walls are one of the most popular components that are used for dividing and arranging spaces in building construction. In spite of the fact that the masonry infills have many advantages, the system needs to be used with caution when the earthquake load is to be considered. The infills tend to develop diagonal compression struts during earthquake and increase the demand in surrounding RC frames. If there are openings in the infill walls, the loading path gets even complicated and the engineering judgements are required for designing the system. In this study, a masonry infill system was investigated through finite element analysis (FEA) and the results were compared with the current design standard, ASCE 41. It is noted that the equivalent width of the compression strut estimated by ASCE 41 could be 32% less than that using detailed FEA. The global load resisting capacity was also estimated by 28% less when ASCE 41 was used compare to the FEA case. Rather than using expensive FEA, the adapting ASCE 41 for the analysis and design of the masonry infills with openings would provide a good estimation by about 25% conservatively.

Optimum Design Criteria based on Capacity of Synchronous Reluctance Motor Using a Coupled FEM & SUMT (유한요소법을 이용한 동기형 릴럭턴스 전동기의 용량에 따른 회전자 구조설계와 SUMT를 이용한 최적설계)

  • Kwon, Sun-Bum;Kim, Gi-Bok;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.126-128
    • /
    • 2004
  • This paper deals with an automatic optimum design based on capacity for a synchronous reluctance motor (SynRM). The focus of this paper is the design relative to the output power on the basis of rotor shape of a SynRM in each capacity. And optimization algorithm is used by means of sequential unconstrained minimization technique(SUMT). The coupled Finite Elements Analysis (FEA) & Preisach model have been used to evaluate nonlinear solutions. The proposed procedure allows to define the rotor geometric dimensions according to capacity starting from an existing motor or a preliminary design.

  • PDF

Stator Core with Slits in Transverse Flux Rotary Machine to Reduce Eddy Current Loss

  • Lee, Ji-Young;Koo, Dae-Hyun;Kang, Do-Hyun;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.51-55
    • /
    • 2012
  • This paper presents an eddy current loss analysis for a transverse flux rotary machine (TFRM) with laminated stator cores, which consist of inner and outer cores whose laminated directions are perpendicular to each other. Although the TFRM is laminated to reduce eddy current losses, it still exhibits rapidly increasing core losses as the frequency increases. To solve this problem, slits are introduced to the stator outer core. 3-dimensional finite element analysis (3D FEA) based on the T-${\Omega}$ formulation is used to solve the eddy-current problem for a various numbers of slits in the nonlinear lamination core. The effects of the slits are confirmed using experiment data and 3D FEA results.

Optimum Design Criteria Based on the Rated Watt of a Synchronous Reluctance Motor Using a Coupled FEM & SUMT (유한요소법과 SUMT를 이용한 동기형 릴럭턴스 전동기의 용량에 따른 회전자 구조 최적설계)

  • Kwon, Sun-Bum;Lee, Jung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.8
    • /
    • pp.364-369
    • /
    • 2005
  • This paper deals with an automatic optimum design based on a rated output for a synchronous reluctance motor (SynRM). The focus of this paper is the motor design relative to the output power on the basis of rotor shape of a SynRM in each rated watt. And optimization algorithm is used by means of sequential unconstrained minimization technique(SUMT). The coupled Finite Elements Analysis (FEA) & Preisach model have been used to evaluate nonlinear solutions. The proposed procedure allows to define the rotor geometric dimensions according to rated watt starting from an existing motor or a preliminary design.

An Effectiveness of Temperature-Dependency Thermal Properties in Transient Thermal Analysis of Concrete Structures Exposed to Fire (화재시 콘크리트의 열특성계수가 비정상 열전달해석에 미치는 영향)

  • Lee, Jae-Young;Han, Byung-Chan;Kim, Jae-Hwan;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.11-14
    • /
    • 2008
  • This paper is currently being conducted to develop a nonlinear finite element analysis methods for predicting the structural behavior of reinforced concrete structures, exposed to fire. The changes in thermal parameters are discussed from the point of view of changes of structure and chemical composition due to the high temperature exposure. Although, this study considers codes standard fire for reinforced concrete frame, any other time-temperature relationship can be easily incorporated.

  • PDF

Verification of Linear FE Model for Nonlinear SSI Analysis by Boundary Reaction Method (경계반력법에 의한 비선형 SSI 해석을 위한 선형 FE 해석모델 검증)

  • Lee, Gye Hee;Hong, Kwan Young;Lee, Eun Haeng;Kim, Jae Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.95-102
    • /
    • 2014
  • In this paper, a coupling scheme for applying finite element analysis(FEA) programs, such as, LS-DYNA and MIDAS/Civil, to a nonlinear soil structure interaction analysis by the boundary reaction method(BRM) is presented. With the FEA programs, the structure and soil media are discretized by linear or nonlinear finite elements. To absorb the outgoing elastic waves to unbounded soil region as much as possible, the PML elements and viscous-spring elements are used at the outer FE boundary, in the LS-DYNA model and in MIDAS/Civil model, respectively. It is also assumed that all the nonlinear elements in the problem are limited to structural region. In this study, the boundary reaction forces for the use in the BRM are calculated using the KIESSI-3D program by solving soil-foundation interaction problem subjected to incident seismic waves. The effectiveness of the proposed approach is demonstrated with a linear SSI seismic analysis problem by comparing the BRM solution with the conventional SSI solution. Numerical comparison indicates that the BRM can effectively be applied to a nonlinear soil-structure analysis if motions at the foundation obtained by the BRM for a linear SSI problem excluding the nonlinear structure is conservative.

Integrating OpenSees with other software - with application to coupling problems in civil engineering

  • Gu, Quan;Ozcelik, Ozgur
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.85-103
    • /
    • 2011
  • Integration of finite element analysis (FEA) software into various software platforms is commonly used in coupling systems such as systems involving structural control, fluid-structure, wind-structure, soil-structure interactions and substructure method in which FEA is used for simulating the structural responses. Integrating an FEA program into various other software platforms in an efficient and simple way is crucial for the development and performance of the entire coupling system. The lack of simplicity of the existing integration methods makes this integration difficult and therefore entails the motivation of this study. In this paper, a novel practical technique, namely CS technique, is presented for integrating a general FEA software framework OpenSees into other software platforms, e.g., Matlab-$Simulink^{(R)}$ and a soil-structure interaction (SSI) system. The advantage of this integration technique is that it is efficient and relatively easy to implement. Instead of OpenSees, a cheap client handling TCL is integrated into the other software. The integration is achieved by extending the concept of internet based client-server concept, taking advantage of the parameterization framework of OpenSees, and using a command-driven scripting language called tool command language (TCL) on which the OpenSees' interface is based. There is no need for any programming inside OpenSees. The presented CS technique proves as an excellent solution for the coupling problems mentioned above (for both linear and nonlinear problems). Application examples are provided to validate the integration method and illustrate the various uses of the method in the civil engineering.

Experimental and numerical investigation of reinforced concrete beams containing vertical openings

  • Parol, Jafarali;Ben-Nakhi, Ammar;Al-Sanad, Shaikha;Al-Qazweeni, Jamal;Al-Duaij, Hamad J.;Kamal, Hasan
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.383-393
    • /
    • 2019
  • Horizontal openings in reinforced concrete (RC) beams are quite often used to accommodate service pipelines. Several research papers are available in the literature describing their effect. RC beams with vertical openings are commonly used to accommodate service lines in residential buildings in Kuwait. However, there are lack of design guidelines and best practices reported in the literature for RC beams with vertical openings, whereas the detailed guidelines are available for beams with horizontal openings. In the present paper, laboratory experiments are conducted on nine RC beams with and without vertical openings. Parametric study has been carried out using nonlinear finite element analysis (FEA) with changes in the diameter of the opening, various positions of the opening along the length and width of the beam, edge distance, etc. 50 finite element simulations were conducted. The FEA results are verified using the results from the laboratory experiments. The study showed that the load carrying capacity of the beam is reduced by 20% for the RC beam with vertical openings placed near the center of the beam compared to a solid beam without an opening. Significant reduction in load carrying capacity is observed for beams with an opening near the support (${\approx}15%$). The overall stiffness of the beam, crack pattern and failure modes were not affected due to the presence of the vertical opening. Furthermore, an artificial neural network (ANN) analysis is carried out using the FEA generated data. The results and observations from the ANN and FEA are in good agreement with experimental results.