• Title/Summary/Keyword: Nonlinear Distortion

Search Result 387, Processing Time 0.03 seconds

Analysis of Volatage and Current Waveform Distortion Characteristics at Office Buildings (사무용 빌딩에서의 전압 및 전류파형 왜곡특성 분석)

  • Yoo, Jae-Geun;Lee, Sang-lck;Jeon, Jeong-Chay;Jeong, Jong-Wook;Lim, Young-Bae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.155-161
    • /
    • 2005
  • Nonlinear electronic loads used at office buildings distort the voltage and current waveform that cause the overheating of transformer losses, ELB(Electrical Leakage Breaker) tripping, and so on. This paper analyzed waveform distortion characteristics at several once buildings by comparing with magnitude of voltage and current harmonics, crest factor of voltage and current, phase voltage and current unbalance. As a consequence, severe current waveform distortion in phase and neutral line by harmonics and high current unbalance rates by unbalanced using of single loads among the three phases are investigated. The results of the study can be used in making decisions regarding reasonable and economical operating of loads at office buildings.

Numerical Research on Suppression of Thermally Induced Wavefront Distortion of Solid-state Laser Based on Neural Network

  • Liu, Hang;He, Ping;Wang, Juntao;Wang, Dan;Shang, Jianli
    • Current Optics and Photonics
    • /
    • v.6 no.5
    • /
    • pp.479-488
    • /
    • 2022
  • To account for the internal thermal effects of solid-state lasers, a method using a back propagation (BP) neural network integrated with a particle swarm optimization (PSO) algorithm is developed, which is a new wavefront distortion correction technique. In particular, by using a slab laser model, a series of fiber pumped sources are employed to form a controlled array to pump the gain medium, allowing the internal temperature field of the gain medium to be designed by altering the power of each pump source. Furthermore, the BP artificial neural network is employed to construct a nonlinear mapping relationship between the power matrix of the pump array and the thermally induced wavefront aberration. Lastly, the suppression of thermally induced wavefront distortion can be achieved by changing the power matrix of the pump array and obtaining the optimal pump light intensity distribution combined using the PSO algorithm. The minimal beam quality β can be obtained by optimally distributing the pumping light. Compared with the method of designing uniform pumping light into the gain medium, the theoretically computed single pass beam quality β value is optimized from 5.34 to 1.28. In this numerical analysis, experiments are conducted to validate the relationship between the thermally generated wavefront and certain pumping light distributions.

Analysis of Harmonic Currents Propagation on the Self-Excited Induction Generator with Nonlinear Loads

  • Nazir, Refdinal
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1935-1943
    • /
    • 2014
  • In recent years, the induction machines are increasingly being used as self-excited induction generators (SEIG). This generator is especially widely employed for small-scale power plants driven by renewable energy sources. The application of power electronic components in the induction generator control (IGC) and the loading of SEIG using nonlinear loads will generate harmonic currents. This paper analyzes the propogation of harmonic currents on the SEIG with nonlinear loads. Transfer function method in the frequency domain is used to calculate the gain and phase angle of each harmonic current component which are generated by a nonlinear loads. Through the superposition approach, this method has also been used to analyze the propagation of harmonic currents from nonlinear load to the stator windings. The simulation for the propagation of harmonic currents for a 4 pole, 1.5 kW, 50Hz, 3.5A, Y-connected, rotor-cage SEIG with energy-saving lamps, have provided results almost the same with the experiment. It can prove that the validity of the proposed models and methods. The study results showed that the propagation of harmonic currents on the stator windings rejects high order harmonics and attenuates low order harmonics, consequently THDI diminish significantly on the stator windings.

Enhanced Multi-Channel Adaptive Noise Control Compensating Nonlinear Distortions (비선형 왜곡을 보상하는 향상된 다채널 적응 소음 제어)

  • Kwon, Oh Sang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.46-51
    • /
    • 2015
  • In fields of controlling acoustical noises, the overall adaptive control system is nonlinear due to the loudspeaker, amplifiers, converters, and microphones, etc. and the performance of noise control is decreased by the extent of nonlinearities, so an adaptive control system compensating nonlinear distortions is needed. In this paper, a new multi-channel adaptive noise controller was proposed, which was combined with the adaptive compensator to effectively linearize nonlinear distortions in the overall adaptive control system. Through computer simulations, the proposed adaptive compensator could linearize the nonlinear distortions and the proposed noise controller had better capability of controlling the noises than the conventional LMS controller.

Numerical study on attenuation and distortion of compression wave propagation into a straight tube (직관내를 전파하는 압축파의 감쇠와 변형에 관한 수치해석적 연구)

  • Kim, Hui-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2315-2325
    • /
    • 1996
  • A compression wave is attenuated or distorted as it propagates in a tube. The present study investigated the propagation characteristics of the compression waves which are generated by a train in a high-speed railway tunnel. A Total Variation Diminishing (TVD) difference scheme was applied to one-dimensional, unsteady viscous compressible flow. The numerical calculation involved the effects of wall friction, heat transfer and energy loss due to the friction heat in the boundary layer behind the propagating compression wave, and compared with the measurement results of a shock tube and a real tunnel. The present results show that attenuation of the compression wave in turbulent boundary layer is stronger than in laminar boundary layer, but nonlinear effect of the compression wave is greater in the laminar boundary layer. The energy loss due to the frictional heat had not influence on attenuation and distortion of the propagating compression waves.

Performance Analysis of SLM Method for PAR Reduction Based on OFDM System (OFDM 시스템에서 PAR 감소를 위한 SLM 기법의 성능 분석)

  • Lee, Sang-Geun;Lee, Yoon-Hyun;Jin, Seong-Woo
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.1
    • /
    • pp.20-25
    • /
    • 2006
  • In these days, OFDM(Orthogonal Frequency Division Multiplexing) is adopted to support high-speed data communication based on multi-path RF channel, but it has some weak point. One of those is that it has a higher PAR(peak-to-average power ratio) compared with single-carrier method. If some PAR of the transmitted signal is high, nonlinear amplitude distortion has occurred when it pass through the HPA(high power amplifier). There is a solution to prevent nonlinear distortion using higher peak power HPA, but it makes inefficiency and a cost problem. In this paper, we choose the SLM(Selected Mapping) scheme, which transmit the lowest PAR signal after OFDM symbol mapping, in various schemes reducing PAR for OFDM system. And we derived the performances of SLM method in fading channel through computer simulations.

  • PDF

Performance Improvement in Optical CDMA System Under The Presence of Beat Noise Using a Cancellation Method

  • Benaree, Warut;Noppanakeepong, Suthichai;Leelaruji, Nipha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1206-1210
    • /
    • 2005
  • This paper presents performance improvement in optical CDMA system under the presence of beat noise using a cancellation technique. Optical fibers and atmospheric optical communications have been proposed the connection between base stations and central station. The optical signal beat noise is due to interference between lightwave, many optical waves are simultaneously incident on each receiver photodiode. Since the photodiode acts as a square-law detector, beat noise can occur in the receiver. While A two-stage cancellation technique is analyzed and verified via simulation employed here because of its system simplicity. By using the random ingredients of all user signals are estimated, the beat noise is rebuilt and removed from the intended signal. In addition to cancellation technique cancel the inherent multiuser interference (MUI) in CDMA system and nonlinear distortion (NLD) in optical system. It is performed at the receiver of the central station where the random ingredients of all user signals are estimated and the MUI and the NLD are rebuilt and removed from the received signal. The validity of the cancellation technique is theoretically analyzed and shown by numerical results. The increasing of capacity in two stage cancellation are obtained.

  • PDF

Performance Improvement of Reduced Order Extended Luenberger Observer(ROELO) based Sensorless Vector Control Fed by Matrix Converter With Non-linearity Modeling (비선형모델을 이용한 matrix convertor로 구동되는 축소차원 확장 루엔버거 관측기기반의 유도전동기 센서리스 벡터제어의 성능개선)

  • Lee Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.363-372
    • /
    • 2005
  • This paper presents an improved sensorless vector control system for high performance induction motor drives fed by a matrix converter with non-linearity compensation. The nonlinear voltage distortion that is caused by commutation delay and on-state voltage drop in switching devices is corrected by a new matrix converter model. A Reduced Order Extended Luenberger Observer (ROELO) is employed to bring better response in the whole speed operation range and a method to select the observer gain is presented. Experimental results are shown to illustrate the performance of the proposed system.

Analysis of Power Amplifier Phase Distortion Characteristics for IEEE 802.11a OFDM Wireless LAM Using Phase Predistortion (사전위상 왜곡을 이용한 IEEE 802.11a OFDM 무선랜 전력증폭기 위상왜곡 특성분석)

  • Oh Chung Gyun;Choi Jae Hong;Koo Kyung Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.2 s.332
    • /
    • pp.75-80
    • /
    • 2005
  • In this paper, 2-stage power amplifier has been designed for 5.8GHz wireless LAN application. The power amplifier PldB output power has 21.6dBm at 5.8GHz frequency. Also the power amplifier shows 17.6dB gain and -17.8dB input return loss at 5.725GHz to 5.825GHz. The OFDM modulation and transmission block have been modeled in order to analyse the relationship between the power amplifier distortion and output ACPR for the IEEE 802.11a wireless LAN. The nonlinear characteristic of the power amplifier has been modeled as AM-to-AM and AM-to-PM using the behavioral model, and the output spectrum is analysed with the phase distortion variation. Also, amplifier back-off value from PldB to satisfy the required IEEE 802.11a standard spectrum mask has been simulated with phase distortion, and the simulation data have been compared to the measurement result collected by using the pre-distortion technique.

A Performance Evaluation of VSS-MMA Adaptive Equalization Algorithm using the Non-Linear Fuction of Error Signal for QAM System (QAM 시스템에서 오차 신호의 비선형 함수를 이용한 VSS-MMA 적응 등화 알고리즘의 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.131-137
    • /
    • 2015
  • This paper relates with the VSS-MMA (Variable Step Size-Multiple Modulus Algorithm) adaptive equalization algorithm which is possible to improving the equalization performance by use the nonlinear fuction of error signal in the MMA adaptive equalization algorithm that are used for the minimization of the intersymbol interference due to the distortion which occurs in the time dispersive channel for the transmission of QAM signal in the system.. In the conventional MMA, we obtains the tap coefficient of adaptive equalizer using the fixed step size, but in the VSS-MMA, we obtains the tap coefficient of adaptive equalizer using the variable step size based on a nonlinear function of error signal. By adapting the variable step size, it was confirmed that the improved equalization performance were obtained by computer simulation. For this, the equalizer output signal constellation, residual isi, maximum distortion, MSE and SER were used in the performace index.