• Title/Summary/Keyword: Nonlinear Device

Search Result 343, Processing Time 0.023 seconds

Numerical Analysis of Chamber Flow and Wave Energy Conversion Efficiency of a Bottom-mounted Oscillating Water Column Wave Power Device (고정식 진동수주형 파력 발전장치의 챔버 유동 및 파에너지 변환효율 해석)

  • Koo, Weon-Cheol;Kim, Moo-Hyun;Choi, Yoon-Rak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.388-397
    • /
    • 2010
  • A two-dimensional time-domain, potential-theory-based fully nonlinear numerical wave tank (NWT) was developed by using boundary element method and the mixed Eulerian-Lagrangian (MEL) approach for free-surface node treatment. The NWT was applied to prediction of primary wave energy conversion efficiency of a bottom-mounted oscillating water column (OWC) wave power device. The nonlinear free-surface condition inside the chamber was specially devised to represent the pneumatic pressure due to airflow velocity and viscous energy loss at the chamber entrance due to wave column motion. The newly developed NWT technique was verified through comparison with given experimental results. The maximum energy extraction was estimated with various chamber-air duct volume ratios.

Design Circuit Parameter Estimation of Impulse Generator and its application to 10/350${\mu}s$ Lightning Impulse Current Generator (임펄스 발생기의 회로 설계 파라미터 예측계산과 10/350${\mu}s$ 뇌임펄스 전류발생기 적용)

  • Lee, Jae-Bok;Shenderey, S. V.;Chang, Sug-Hun;Myung, Sung-Ho;Cho, Yuen-Gue
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1822-1828
    • /
    • 2008
  • This paper presents design parameter calculation methodology and its realization to construction for the 10/350${\mu}s$ lightning impulse current generator(ICG) modelled as double exponential function waveform with characteristic parameters ${\alpha},{\beta}$. Matlab internal function, "fzero" was applied to find ${\lambda}={\alpha}/{\beta}$ which is solution of nonlinear equation linearly related with two wave parameter $T_1$ and $T_2$. The calculation results for 10/350${\mu}s$ lightning impulse current show very good accuracy with error less 0.03%. Two type of 10/350${\mu}s$ ICGs based on the calculated design circuit parameters were fabricated by considering the load variation. One is applicable to the MOV based Surge protective device(SPD) for less 15 kA and the other is to test small resistive devices such as spark gap arrester and bonding device with maximum current capability 30 kA. The tested waveforms show error within 10% in comparison with the designed estimation and the waveform tolerance recommended in the IEC 61643-1 and IEC 60060-1.

Development of a methodology for damping of tall buildings motion using TLCD devices

  • Diana, Giorgio;Resta, Ferruccio;Sabato, Diego;Tomasini, Gisella
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.629-646
    • /
    • 2013
  • One of the most common solutions adopted to reduce vibrations of skyscrapers due to wind or earthquake action is to add external damping devices to these structures, such as a TMD (Tuned Mass Damper) or TLCD (Tuned Liquid Column Damper). It is well known that a TLCD device introduces on the structure a nonlinear damping force whose effect decreases when the amplitude of its motion increases. The main objective of this paper is to describe a Hardware-in-the-Loop test able to validate the effectiveness of the TLCD by simulating the real behavior of a tower subjected to the combined action of wind and a TLCD, considering also the nonlinear effects associated with the damping device behavior. Within this test procedure a scaled TLCD physical model represents the hardware component while the building dynamics are reproduced using a numerical model based on a modal approach. Thanks to the Politecnico di Milano wind tunnel, wind forces acting on the building were calculated from the pressure distributions measured on a scale model. In addition, in the first part of the paper, a new method for evaluating the dissipating characteristics of a TLCD based on an energy approach is presented. This new methodology allows direct linking of the TLCD to be directly linked to the increased damping acting on the structure, facilitating the preliminary design of these devices.

Origin of Nonlinear Device Performance with Illuminated Sun Intensity in Mesoscopic Sb2S3-sensitized Photoelectrochemical Solar Cells using Cobalt Electrolyte

  • Im, Sang-Hyuk;Lee, Yong-Hui;Kim, Hi-Jung;Lim, Choong-Sun;Kang, Yong-Ku;Seok, Sang-Il
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.174-179
    • /
    • 2011
  • The mesoscopic $Sb_2S_3$-sensitized photoelectrochemical solar cells using cobalt redox electrolyte exhibit nonlinear behavior of power conversion efficiency with illuminated sun intensity. From the measurement of bulk diffusion and electrochemical impedance spectroscopy studies, we suggest that the nonlinearity of device performance with illuminated sun intensity is attributed not to the slow bulk diffusion problem of cobalt electrolyte but to the limited mass transport in narrowed pore volume in mesoscopic $TiO_2$ electrode.

Behaviour of Shear Wall Structures with Energy Dissipation Device in Coupling Beam (연결보에 감쇠장치를 적용한 전단벽식 구조물의 거동특성)

  • Kim, Jin-Sang;Yoon, Tae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.21-30
    • /
    • 2018
  • Building structures of apartment in korea conventionally adopt shear walls using coupling beams as seismic force-resisting systems. Energy dissipating devices employed the building structures are used instead of the coupling beams in order to increase the seismic performances by providing additional damping and stiffness. This study aims to introduce energy dissipating devices which are preferred in structural system and aims to investigate structural behaviors of shear wall structures employing such devices instead of coupling beams. In order for achieve research objectives, Finite Element Analysis and Nonlinear analysis was carry out. Finite Element Analysis results was correspond with experimental results and this is indicated that the device can provide sufficient additional damping and stiffness into shear wall structures. Throughout nonlinear static analyses, examples structures with the devices can enhance seismic performance of building structures due to their sufficient energy dissipating capacities. Especially, strength and ductility capacities were significantly improved when it is compared with the performance of building structures without the devices. Throughout nonlinear dynamic analyses, it was observed that structural damages can be mitigated due to reduced seismic demands for seismic force-resisting systems. It is especially noted due to the fact that story drifts, accelerations, shear demands are reduced by 15~18%, 20~28% and 15~20%, respectively.

On the assessment of modal nonlinear pushover analysis for steel frames with semi-rigid connections

  • Zarfam, Panam;Mofid, Massood
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.383-398
    • /
    • 2009
  • Applying nonlinear statistical analysis methods in estimating the performance of structures in earthquakes is strongly considered these days. This is due to the methods' simplicity, timely lower cost and reliable estimation in seismic responses in comparison with time-history nonlinear dynamic analysis. Among nonlinear methods, simplified to be incorporated in the future guidelines, Modal Pushover Analysis, known by the abbreviated name of MPA, simply models nonlinear behavior of structures; and presents a very proper estimation of nonlinear dynamic analysis using lateral load pattern appropriate to the mass. Mostly, two kinds of connecting joints, 'hinge' and 'rigid', are carried out in different type of steel structures. However, it should be highly considered that nominal hinge joints usually experience some percentages of fixity and nominal rigid connections do not employ totally rigid. Therefore, concerning the importance of these structures and the significant flexibility effect of connections on force distribution and elements deformation, these connections can be considered as semi-rigid with various percentages of fixity. Since it seems, the application and implementation of MPA method has not been studied on moment-resistant steel frames with semi rigid connections, this research focuses on this topic and issue. In this regard several rigid and semi-rigid steel bending frames with different percentages of fixity are selected. The structural design is performed based on weak beam and strong column. Followed by that, the MPA method is used as an approximated method and Nonlinear Response History Analysis (NL-RHA) as the exact one. Studying the performance of semi-rigid frames in height shows that MPA technique offers reasonably reliable results in these frames. The methods accuracy seems to decrease, when the number of stories increases and does decrease in correlation with the semi-rigidity percentages. This generally implies that the method can be used as a proper device in seismic estimation of different types of low and mid-rise buildings with semi-rigid connections.

Development of Sensor Device and Probability-based Algorithm for Braille-block Tracking (확률론에 기반한 점자블록 추종 알고리즘 및 센서장치의 개발)

  • Roh, Chi-Won;Lee, Sung-Ha;Kang, Sung-Chul;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.249-255
    • /
    • 2007
  • Under the situation of a fire, it is difficult for a rescue robot to use sensors such as vision sensor, ultrasonic sensor or laser distance sensor because of diffusion, refraction or block of light and sound by dense smoke. But, braille blocks that are installed for the visaully impaired at public places such as subway stations can be used as a map for autonomous mobile robot's localization and navigation. In this paper, we developed a laser sensor stan device which can detect braille blcoks in spite of dense smoke and integrated the device to the robot developed to carry out rescue mission in various hazardous disaster areas at KIST. We implemented MCL algorithm for robot's attitude estimation according to the scanned data and transformed a braille block map to a topological map and designed a nonlinear path tracking controller for autonomous navigation. From various simulations and experiments, we could verify that the developed laser sensor device and the proposed localization method are effective to autonomous tracking of braille blocks and the autonomous navigation robot system can be used for rescue under fire.

Control of Left Ventricular Assist Device using Neural Network Feedback Feedforward Controller (인공신경망 Feedforward제어기를 이용한 좌심실보조장치의 제어실험)

  • 정성택;류정우;김상현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.150-155
    • /
    • 1997
  • In this paper,we present neural network for control of Left Ventricular Assist Device(LVAD)system with a pneumatically driven mock cirulation system. It is necessary to apply high perfomance control techniques, since the LVAD system represent nonlinear and time-varing characteristics. Fortunately, the neural network can be applied to control of a nonliner dynamic system by learning capability. In this study,we identify the LVAD system with neural network and control the LVAD system by PID controller and neural network feedforward controller. The ability and effectiveness of controlling the LVAD system using the proposed algorithm will be demonstrated by computer simulation and experiment.

  • PDF

Using Pulse-Front Tilt to Measure Laser Pulses Less Than 100 Picoseconds in Duration

  • Jeong, Hoon
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.6
    • /
    • pp.318-321
    • /
    • 2015
  • We demonstrate a frequency-resolved optical grating (FROG) device for measuring the intensity and phase versus time of several-tens-of-picoseconds laser pulses, using a thick nonlinear optical crystal. The huge pulse-front tilt generated by a holographic grating increases the temporal range of the device, which can make a single-shot measurement of laser pulses less than 100 ps in duration. To verify the measurement technique, we generate double pulses using a Michelson interferometer. The measured duration of a single pulse is about 300 fs and the measured maximum delay of two pulses is 60 ps, which implies that the proposed FROG device can measure laser pulses with maximum pulse width of about 120 ps.

PID control of left ventricular assist device (PID 제어기를 이용한 좌심실보조장치의 제어)

  • Jeong, Seong-Taek;Kim, Hun-Mo;Kim, Sang-Hyeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.315-320
    • /
    • 1998
  • In this paper, we present the PID control method for the controlling flow rate of highly complicated nonlinear Left Ventricular Assist Device(LVAD) with pneumatically driven mock circulatory system. Beat Rate (BR), Systole-Diastole Rate (SDR) and flow rate are used as the main variables of the LVAD system. System modeling is completed using the neural network with input variables (BR, SDR, their derivatives, actual flow) and an output valiable(actual flow). Then, as the basis of this model, we perform the simulation of PID control to predict the performance and tendency of the system and control the flow rate of LVAD system using the PID controller. The ability and effectiveness of identifying and controlling a LVAD system using the proposed algorithm will be demonstrated through computer simulation and experiments.

  • PDF