• Title/Summary/Keyword: Nonlinear Design

Search Result 4,468, Processing Time 0.031 seconds

Seismic Analysis of a Bridge Using Fiber Element (섬유요소를 이용한 교량의 지진해석)

  • 조정래;곽임종;조창백;김병석;김영진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.151-158
    • /
    • 2002
  • In the present design concept, the nonlinear behaviour of bridges is at lowed under large earthquake. The nonlinearity is, however, localized like pier, bearing, etc. Especially, pier columns are most important members for seismic performance. It is, however, difficult to solve the problem how the nonlinearity of columns should be modelled. In this study, the fiber element is used for modelling pier column. The element is a kind of structural elements like frame element, and it can model the distributed plasticity of plastic hinge. A 3 span continous bridge is taken for seismic analysis. First, the nonlinear static analysis the column at fixed support are performed so that the characteristics of column is analyzed. Second, Linear and nonlinear dynamic analysises using simplified model for longitudinal direction are carried out and the results are analyzed.

  • PDF

Comparison of Performance Evaluation Methods Based on the Estimation of Nonlinear Seismic Responses for Multistory Building (건축구조물의 비선형 지진응답 산정을 위한 내진성능평가 방법의 비교)

  • 최원호;이동근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.349-356
    • /
    • 2002
  • There has been an increasing trend toward the use of pushover analysis as a tool for evaluating the seismic resistant and safety of a building structure in the performance based earthquake engineering field. The ATC-40 document proposed a nonlinear static procedure based on the Capacity Spectrum Method to determine earthquake-induced demand given the structure pushover curve, which a curve representing base shear versus roof displacement. However, the procedure is conceptually simple, iterative and time consuming method and may sometimes lead to no solution or multiple solutions. A new improved method of seismic performance evaluation for moment frame building, which take into account the previously mentioned deficiencies of currently used elastic design procedures, is presented in this paper. The results of nonlinear static and nonlinear time history analysis of an example high-rise steel moment frame designed by the proposed method are presented and discussed.

  • PDF

Intelligent Fuzzy Controller for Nonlinear Systems

  • Joo, Young-Hoon;Lee, Sang-Jun;Oh, Jae-Heung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.139-145
    • /
    • 2002
  • In this paper, we proposed an intelligent digital redesign method for a class of fuzzy-model-based controllers, effective fur stabilization of continuous-time nonlinear systems. The TS fuzzy model is used to expend the results of the digital redesign technique to nonlinear systems. The proposed method utilized the recently developed LMI technique to obtain a digitally redesigned fuzzy-model-based controller. The intelligent digital redesign problem is converted to equivalent problem, and the LMI method is used to find the digitally redesigned fuzzy-model-based controller. The stabilization conditions of TS fuzzy model are derived for stabilization in the sense of Laypunov stability. In order to demonstrates the effectiveness and feasibility of the proposed controller design methodology, we applied this method to the single link flexible-joint robot arm.

A Study on the Behaviour of Nonlinear Dynamic Absorber (비선형 동흡진기의 동적 거동에 관한 연구)

  • 박철희;송석홍;신현재;홍성철
    • Journal of KSNVE
    • /
    • v.3 no.2
    • /
    • pp.137-143
    • /
    • 1993
  • The conventional dynamic vibration absorber is very efficient in inhibiting the vibration of a machine. This is accomplished by "tuning" the absorber to the frequency of the harmonic disturbing force. If, however, the frequency of the disturbing force varies over a tuning frequency range in the normal operation of the system, the linear dynamic absorber may become inoperative and might aggravate matters particularly. This study is to endow the dynamic absorber with greater flexibility in suppressing vibrations throught a range of frequencies of the disturbing force. By introducing springs with nonlinear characteristics into its design, the results can be obtained. In this paper, the machine and the absorber were modelled as a nonlinear two-degree-of freedom system. And the concepts of nonlinear normal mode were adopted to obtain this purpose.s purpose.

  • PDF

Robust Adaptive Neural Network Controller with Dynamic Structure for Nonaffine Nolinear Systems (불확실한 비선형 계통에 대한 동적인 구조를 가지는 강인한 적응 신경망 제어기 설계)

  • Park, Jang-Hyeon;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.647-655
    • /
    • 2001
  • In adaptive neuro-control, neural networks are used to approximate unknown plant nonlinearities. Until now, most of the studies in the field of controller design for nonlinear system using neural network considers the affine system with fixed number of neurons. This paper considers nonaffine nonlinear systems and on-line variation of the number of neurons. A control law and adaptive laws for neural network weights are established so that the whole system is stable in the sense of Lyapunov. In addition, at the expense of th input, tracking error converges to the arbitrary small neighborhood of the origin. The efficiency of the proposed scheme is shown through simulations ofa simple nonaffine nonlinear system.

  • PDF

Fuzzy H2H Controller Design for Delayed Nonlinear Systems (시간지연을 갖는 비선형 시스템의 퍼지 H2H 제어기 설계)

  • Jo, Hui-Su;Lee, Gap-Rae;Park, Hong-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.578-583
    • /
    • 2002
  • This paper presents a method for designing fuzzy $H_2/H_{\infty}$ controllers of nonlinear systems with time varying delay. Takagi-Sugeno fuzzy model is employed to represent nonlinear systems with time varying delay. Using a single quadratic Lyapunov function, the globally exponential stability and $H_2/H_{\infty}$ performance problem are discussed. A sufficient condition for the existence of fuzzy $H_2/H_{\infty}$ controllers is then presented in terms of linear matrix inequalities(LMls). The proposed fuzzy $H_2/H_{\infty}$ controllers minimizes the upper bound on the linear quadratic performance measure.

Development of Multidirectional Nonlinear Numerical Wave Tank by Naoe-FOAM-SJTU Solver

  • Cao, Hong-Jian;Wan, De-Cheng
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.14-24
    • /
    • 2015
  • A three-dimensional multidirectional nonlinear numerical wave tank (NWT) based on the Navier-Stokes equations and the Finite Volume Method (FVM) is developed by using the two-phase hydrodynamic flow solver naoe-FOAM-SJTU based on the open source toolbox OpenFOAM. The free surface is capturing with the Volume Of Fluids (VOF). The directional wave including Stokes wave, solitary wave and nonlinear wave are simulated and verified. The multi-directional waves are also simulated with particular wave spectral such as JONSWAP and wave directional spreading function. The obtained numerical results show the capability of the solver to generate different type of multidirectional nonlinear waves accurately. Meanwhile, it implies that the presented NWT can easily extend to model the wave-structures interactions, which will be great help to the offshore structures design.

Optimal Control of Nonlinear Systems Using The New Integral Operational Matrix of Block Pulse Functions (새로운 블럭펄스 적분연산행렬을 이용한 비선형계 최적제어)

  • Cho Young-ho;Shim Jae-sun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.4
    • /
    • pp.198-204
    • /
    • 2003
  • In this paper, we presented a new algebraic iterative algorithm for the optimal control of the nonlinear systems. The algorithm is based on two steps. The first step transforms nonlinear optimal control problem into a sequence of linear optimal control problem using the quasilinearization method. In the second step, TPBCP(two point boundary condition problem) is solved by algebraic equations instead of differential equations using the new integral operational matrix of BPF(block pulse functions). The proposed algorithm is simple and efficient in computation for the optimal control of nonlinear systems and is less error value than that by the conventional matrix. In computer simulation, the algorithm was verified through the optimal control design of synchronous machine connected to an infinite bus.

A Comparison Study of MIMO Water Wall Model with Linear, MFNN and ESN Models

  • Moon, Un-Chul;Lim, Jaewoo;Lee, Kwang Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.265-273
    • /
    • 2016
  • A water wall system is one of the most important components of a boiler in a thermal power plant, and it is a nonlinear Multi-Input and Multi-Output (MIMO) system, with 6 inputs and 3 outputs. Three models are developed and comp for the controller design, including a linear model, a multilayer feed-forward neural network (MFNN) model and an Echo State Network (ESN) model. First, the linear model is developed by linearizing a given nonlinear model and is analyzed as a function of the operating point. Second, the MFNN and the ESN are developed by using training data from the nonlinear model. The three models are validated using Matlab with nonlinear input-output data that was not used during training.

Dynamic and reliability analysis of stochastic structure system using probabilistic finite element method

  • Moon, Byung-Young;Kang, Gyung-Ju;Kang, Beom-Soo;Cho, Dae-Seung
    • Structural Engineering and Mechanics
    • /
    • v.18 no.1
    • /
    • pp.125-135
    • /
    • 2004
  • Industrial structure systems may have nonlinearity, and are also sometimes exposed to the danger of random excitation. This paper proposes a method to analyze response and reliability design of a complex nonlinear structure system under random excitation. The nonlinear structure system which is subjected to random process is modeled by finite element method. The nonlinear equations are expanded sequentially using the perturbation theory. Then, the perturbed equations are solved in probabilistic methods. Several statistical properties of random process that are of interest in random vibration applications are reviewed in accordance with the nonlinear stochastic problem.