• Title/Summary/Keyword: Nonlinear Critical Speed

Search Result 43, Processing Time 0.016 seconds

A Study on Performance Enhancement in Simulation Fidelity Using a Meta Model (메타모델(Meta Model)을 활용한 시뮬레이터 구현충실도 향상 연구)

  • Cho, Donghyurn;Kwon, Kybeom;Seol, Hyunju;Myung, Hyunsam;Chang, YoungChan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.10
    • /
    • pp.884-892
    • /
    • 2014
  • In this paper, a meta model using neural network substituting for the simulator aerodynamic database is proposed to improve simulation fidelity near the critical flight area and real-time performance. It is shown that the accuracy of the meta model is relatively higher than the existing table lookup methods for arbitrary nonlinear database and the calculation speed is also improved for a specific F-16 maneuver simulation. The increase in the number of hidden nodes in the meta model for better accuracy of database representations causes a delay in function generation due to increased time required for computing exponential functions. In order to make up this drawback, we additionally study the fast exponential function method.

Finding Optimal Controls for Helicopter Maneuvers Using the Direct Multiple-Shooting Method

  • Kim, Min-Jae;Hong, Ji-Seung;Kim, Chang-Joo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.10-18
    • /
    • 2010
  • The purpose of this paper deals with direct multiple-shooting method (DMS) to resolve helicopter maneuver problems of helicopters. The maneuver problem is transformed into nonlinear problems and solved DMS technique. The DMS method is easy in handling constraints and it has large convergence radius compared to other strategies. When parameterized with piecewise constant controls, the problems become most effectively tractable because the search direction is easily estimated by solving the structured Karush-Kuhn-Tucker (KKT) system. However, generally the computation of function, gradients and Hessian matrices has considerably time-consuming for complex system such as helicopter. This study focused on the approximation of the KKT system using the matrix exponential and its integrals. The propose method is validated by solving optimal control problems for the linear system where the KKT system is exactly expressed with the matrix exponential and its integrals. The trajectory tracking problem of various maneuvers like bob up, sidestep near hovering flight speed and hurdle hop, slalom, transient turn, acceleration and deceleration are analyzed to investigate the effects of algorithmic details. The results show the matrix exponential approach to compute gradients and the Hessian matrix is most efficient among the implemented methods when combined with the mixed time integration method for the system dynamics. The analyses with the proposed method show good convergence and capability of tracking the prescribed trajectory. Therefore, it can be used to solve critical areas of helicopter flight dynamic problems.

Development of an Automated Algorithm for Analyzing Rainfall Thresholds Triggering Landslide Based on AWS and AMOS

  • Donghyeon Kim;Song Eu;Kwangyoun Lee;Sukhee Yoon;Jongseo Lee;Donggeun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.125-136
    • /
    • 2024
  • This study presents an automated Python algorithm for analyzing rainfall characteristics to establish critical rainfall thresholds as part of a landslide early warning system. Rainfall data were sourced from the Korea Meteorological Administration's Automatic Weather System (AWS) and the Korea Forest Service's Automatic Mountain Observation System (AMOS), while landslide data from 2020 to 2023 were gathered via the Life Safety Map. The algorithm involves three main steps: 1) processing rainfall data to correct inconsistencies and fill data gaps, 2) identifying the nearest observation station to each landslide location, and 3) conducting statistical analysis of rainfall characteristics. The analysis utilized power law and nonlinear regression, yielding an average R2 of 0.45 for the relationships between rainfall intensity-duration, effective rainfall-duration, antecedent rainfall-duration, and maximum hourly rainfall-duration. The critical thresholds identified were 0.9-1.4 mm/hr for rainfall intensity, 68.5-132.5 mm for effective rainfall, 81.6-151.1 mm for antecedent rainfall, and 17.5-26.5 mm for maximum hourly rainfall. Validation using AUC-ROC analysis showed a low AUC value of 0.5, highlighting the limitations of using rainfall data alone to predict landslides. Additionally, the algorithm's speed performance evaluation revealed a total processing time of 30 minutes, further emphasizing the limitations of relying solely on rainfall data for disaster prediction. However, to mitigate loss of life and property damage due to disasters, it is crucial to establish criteria using quantitative and easily interpretable methods. Thus, the algorithm developed in this study is expected to contribute to reducing damage by providing a quantitative evaluation of critical rainfall thresholds that trigger landslides.