• Title/Summary/Keyword: Nonlinear Actuator

Search Result 281, Processing Time 0.023 seconds

Robust Adaptive Fault-Tolerant Control for Robot Manipulators with Performance Degradation Due to Actuator Failures and Uncertainties (구동기 고장과 불확실성으로 인한 성능 저하를 가지는 로봇 매니퓰레이터에 대한 강인한 적응 내고장 제어)

  • 신진호;백운보
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.3
    • /
    • pp.173-181
    • /
    • 2004
  • In normal robot control systems without any actuator failures, it is assumed that actuator torque coefficients applied at each joint have normally 1's all the time. However, it is more practical that actuator torque coefficients applied at each joint are nonlinear time-varying. In other words, it has to be considered that actuators equipped at joints may fail due to hardware or software faults. In this work, actuator torque coefficients are assumed to have non-zero values at all joints. In the case of an actuator torque coefficient which has a zero value at a joint, it means the complete loss of torque on the joint. This paper doesn't deal with the case. As factors of performance degradation of robots, both actuator failures and uncertainties are considered in this paper at the same time. This paper proposes a robust adaptive fault-tolerant control scheme to maintain the required performance and achieve task completion for robot manipulators with performance degradation due to actuator failures and uncertainties. Simulation results are shown to verify the fault tolerance and robustness of the Proposed control scheme.

Fault Diagnosis of a Nonlinear Dynamic System Based on Sliding Mode

  • Yu, Wenxin;Wang, Junnian;Jiang, Dan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2504-2510
    • /
    • 2018
  • Actuator failures and the failures of controlled objects are often considered together. To overcome this limitation, a class of sliding mode observers for the fault diagnosis of nonlinear systems is designed in this paper. Due to the influence of the sliding mode function, the control strategy and the residual change of the observer exhibit certain trends governed by specific relations. Therefore, according to the changes in the control strategy and the observer residuals, the sensor and actuator faults in nonlinear systems can be determined. Finally, the effectiveness of the proposed method is verified based on simulations of a DC motor system.

Anti-Jump Resonance Characteristics of Anti-Windup Compensator for Systems with a Saturating Actuator (와인드업 방지 보상기의 점프공진 제거 특성)

  • 장원욱;노현석;박영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1342-1350
    • /
    • 1993
  • One of the undesirable nonlinear phenomena in feedback control systems is called 'wind up', which is characterized by large overshoot, slow response, and even instability. It is caused by interaction between the integrator in the controller and the saturating actuator. Limit cycle and jump resonance are another nonlinear characteristrics of systems with saturating actuators. Several 'anti-windup' compensators have been developed to prevent some of the aforementioned nonlinear characteristics such as instability and limit cycle, but none has studied the effect of anti-windup compensator on the jump resonance. In this paper, we developed an analytical method to design the compensator to prevent not only limit cycle but also jump resonance. An illustrative example is included to show the compensator eliminates jump resonance effectively.

Nonlinear Hydraulic System Control Using Fuzzy PID Control Technique (퍼지 PID 제어 기법을 이용한 비선형 유압시스템의 제어)

  • 박장호;김종화;류기석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.69-69
    • /
    • 2000
  • Control systems using a hydraulic cylinder as an actuator are modeled to a nonlinear system owing to varying of moments and nonlinearities of hydraulic itself. In this paper, we want to control nonlinear hydraulic systems by adopting the fuzzy PID control technique which include nonlinear time varying control parameters. To do this, we propose the design method of fuzzy Pm controller and in order to assure effectiveness of fuzzy PID controller, computer simulations were executed for the control system.

  • PDF

Robust Missile Autopilot Design using Dynamic Inversion and PI Control (Dynamic Inversion과 PI 제어를 이용한 견실한 유도탄 오토파일롯 설계)

  • Cho, Sung-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.53-60
    • /
    • 2007
  • This paper presents a robust nonlinear autopilot design method based on dynamic inversion and PI(Proportional-Integral) control law. The new controller structure which is different from previous work is composed of classical linear PI control law and nonlinear fast dynamic inversion. A pitch axis model of highly maneuverable missiles and a linearized model for designing Pl controller are presented. The performance of proposed method is illustrated via nonlinear simulations including aerodynamic uncertainties and actuator dynamics.

Finite Element analysis of Magnetic Actuators with permanent magnet (영구자석을 갖는 마그네틱 액추에이터의 유한요소 해석)

  • Park, Jeong-Hong;Seo, Jeong-Ho;Joo, Su-Won;Hahn, Sung-Chin
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.857-859
    • /
    • 2002
  • This paper describes an analysis of Magnetic actuator with permanent magnet using 2-D axisymmetric finite element method. Magnetic actuator is the machine to change electrical signal into mechanical signal, and fast switching device to be used for breaker and automation field etc. This magnetic actuator considered action for armature distance, external circuit, and nonlinear material characteristic and current. Also, comparative analysis is performed for 2 coil type and 1 coil type by coil type of actuator, then characteristic is grasped. It is Combined with external circuit for analyzing transient characteristic by variable time. According to the results, we analyzed action characteristic of Magnetic actuator.

  • PDF

Performance validation and application of a mixed force-displacement loading strategy for bi-directional hybrid simulation

  • Wang, Zhen;Tan, Qiyang;Shi, Pengfei;Yang, Ge;Zhu, Siyu;Xu, Guoshan;Wu, Bin;Sun, Jianyun
    • Smart Structures and Systems
    • /
    • v.26 no.3
    • /
    • pp.373-390
    • /
    • 2020
  • Hybrid simulation (HS) is a versatile tool for structural performance evaluation under dynamic loads. Although real structural responses are often multiple-directional owing to an eccentric mass/stiffness of the structure and/or excitations not along structural major axes, few HS in this field takes into account structural responses in multiple directions. Multi-directional loading is more challenging than uni-directional loading as there is a nonlinear transformation between actuator and specimen coordinate systems, increasing the difficulty of suppressing loading error. Moreover, redundant actuators may exist in multi-directional hybrid simulations of large-scale structures, which requires the loading strategy to contain ineffective loading of multiple actuators. To address these issues, lately a new strategy was conceived for accurate reproduction of desired displacements in bi-directional hybrid simulations (BHS), which is characterized in two features, i.e., iterative displacement command updating based on the Jacobian matrix considering nonlinear geometric relationships, and force-based control for compensating ineffective forces of redundant actuators. This paper performs performance validation and application of this new mixed loading strategy. In particular, virtual BHS considering linear and nonlinear specimen models, and the diversity of actuator properties were carried out. A validation test was implemented with a steel frame specimen. A real application of this strategy to BHS on a full-scale 2-story frame specimen was performed. Studies showed that this strategy exhibited excellent tracking performance for the measured displacements of the control point and remarkable compensation for ineffective forces of the redundant actuator. This strategy was demonstrated to be capable of accurately and effectively reproducing the desired displacements in large-scale BHS.

Hybrid Control of an Active Suspension System with Full-Car Model Using H$_{}$$\infty$/ and Nonlinear Adaptive Control Methods

  • Bui, Trong-Hieu;Suh, Jin-Ho;Kim, Sang-Bong;Nguyen, Tan-Tien
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1613-1626
    • /
    • 2002
  • This paper presents hybrid control of an active suspension system with a full-car model by using H$\sub$$\infty$/ and nonlinear adaptive control methods. The full-car model has seven degrees of freedom including heaving, pitching and rolling motions. In the active suspension system, the controller shows good performance: small gains from the road disturbances to the heaving, pitching and rolling accelerations of the car body. Also the controlled system must be robust to system parameter variations. As the control method, H$\sub$$\infty$/ controller is designed so as to guarantee the robustness of a closed-loop system in the presence of uncertainties and disturbances. The system parameter variations are taken into account by multiplicative uncertainty model and the system robustness is guaranteed by small gain theorem. The active system with H$\sub$$\infty$/ controller can reduce the accelerations of the car body in the heaving, pitching and rolling directions. The nonlinearity of a hydraulic actuator is handled by nonlinear adaptive control based on the back-stepping method. The effectiveness of the controllers is verified through simulation results in both frequency and time domains.

CONTROL PERFORMANCE IMPROVEMENT OF AN EMV SYSTEM USING A PM/EM HYBRID ACTUATOR

  • Ahn, H.J.;Chang, J.U.;Han, D.C.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.429-436
    • /
    • 2007
  • In this study, we improved control performance of an EMV (electromechanical valve) system using a PM/EM (permanent magnet/electromagnet) hybrid EMA (electromagnetic actuator) and showed the feasibilities of both soft landing and fast transition of the EMV system using a simple PID control. The conventional EMV systems using only EM show significant nonlinear characteristics. Therefore, it is very difficult to control the valve position and several complex control schemes are used. This paper focused on the control performance improvement using a PM/EM hybrid actuator. In particular, a PM is used as a key design parameter such as a bias current of a magnetic bearing in order to improve the linear characteristic of the actuator, although most PM/EM hybrid actuators use a PM as a power saver during valve-open and -closed states. First, a FE (finite element) analysis was performed to confirm its linear static force characteristics. Then, both a test rig and a valve control system were built in order to prove experimentally the control performance improvement of the actuator. Finally, feasibilities of both soft landing and fast transition of the system were shown experimentally through gain-scheduled PID (proportional derivative integral) control.

Robust Adaptive Fuzzy Tracking Control Using a FBFN for a Mobile Robot with Actuator Dynamics (구동기 동역학을 가지는 이동 로봇에 대한 FBFN을 이용한 강인 적응 퍼지 추종 제어)

  • Shin, Jin-Ho;Kim, Won-Ho;Lee, Moon-Noh
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.319-328
    • /
    • 2010
  • This paper proposes a robust adaptive fuzzy tracking control scheme for a nonholonomic mobile robot with external disturbances as well as parameter uncertainties in the robot kinematics, the robot dynamics, and the actuator dynamics. In modeling a mobile robot, the actuator dynamics is integrated with the robot kinematics and dynamics so that the actuator input voltages are the control inputs. The presented controller is designed based on a FBFN (Fuzzy Basis Function Network) to approximate an unknown nonlinear dynamic function with the uncertainties, and a robust adaptive input to overcome the uncertainties. When the controller is designed, the different parameters for two actuator models in the actuator dynamics are taken into account. The proposed control scheme does not require the kinematic and dynamic parameters of the robot and actuators accurately. It can also alleviate the input chattering and overcome the unknown friction force. The stability of the closed-loop control system including the kinematic control system is guaranteed by using the Lyapunov stability theory and the presented adaptive laws. The validity and robustness of the proposed control scheme are shown through a computer simulation.