• 제목/요약/키워드: Nonholonomic system

검색결과 79건 처리시간 0.029초

A decentralized control of cooperative transportation by multiple mobile robots using neural network compensator

  • Yang, Xin;Watanabe, Keigo;Kiguchi, Kazuo;Izumi, Kiyotaka
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.50.5-50
    • /
    • 2002
  • In this paper, we propose a method using neural network (NN) to improve the motion control of a decentralized control system for cooperative transportation. In our former work, a decentralized control system for transporting a single object by multiple nonholonomic mobile robots has been developed. One of these mobile robots acts as a leader, who is assumed to be able to plan and to manipulate the omnidirectional motion of the object. Other robots, referred to as followers, cooperatively transport the object by keeping a constant position relative to the object. in this work, it is assumed that the leader can not only plan but also broadcast the local velocity of the object. Then...

  • PDF

백스테핑을 이용한 이동 로봇의 경로 제어기의 설계 (Trajectory Controller Design of Mobile Robot Systems based on Back-stepping Procedure)

  • 이기철;이성렬;류신형;고재원;박민용
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(5)
    • /
    • pp.23-26
    • /
    • 2000
  • Generally, the wheel-driven mobile robot systems, by their structural property, have nonholonomic constraints. These constraints are not integrable and cannot be written as time derivatives of some functions with respect to the generalized coordinates. Hence, nonlinear approaches are required to solve the problems. In this paper, the trajectory controller of wheeled mobile robot systems is suggested to guarantee its convergence to reference trajectory. Design procedure of the suggested trajectory controller is back-stepping scheme which was introduced recently in nonlinear control theory. The performance of the proposed trajectory controller is verified via computer simulation. In the simulation, the trajectory controller is applied to differentially driven robot system and car-like mobile robot system on the assumption that the trajectory planner be given.

  • PDF

Trajectory Controller Design of Mobile Robot based on Back-stepping Procedure

  • Jaewon Kho;Lee, Kicheol;Park, Mignon
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -3
    • /
    • pp.1618-1621
    • /
    • 2002
  • In this paper, the constructive modeling procedure of nonholonomic mobile robot system is carried out with the help of controllability Lie algebra used in differential geometry field, and their geometrical properties are also analyzed. And, a new trajectory controller is suggested to guarantee its convergence to reference trajectory. Design procedure of the suggested trajectory controller is back-stepping scheme which was introduced recently in nonlinear control theory. The performance of the proposed trajectory controller is verified via computer simulation. In the simulation the trajectory controller is applied to differentially driven mobile robot system on the assumption that the trajectory planner be given.

  • PDF

백 스테핑을 이용한 이동 로봇의 경로 제어기의 설계 (Trajectory Controller Design of Mobile Robot based on Back-stepping Procedure)

  • 이기철;고재원;박민용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2787-2789
    • /
    • 2000
  • In this paper. the constructive modeling procedure of nonholonomic mobile robot system is carried out with the help of controllability Lie algebra used in differential geometry field. and their geometrical properties are also analyzed. And, a new trajectory controller is suggested to guarantee its convergence to reference trajectory. Design procedure of the suggested trajectory controller is back-stepping scheme which was introduced recently in nonlinear control theory. The performance of the proposed trajectory controller is verified via computer simulation. In the simulation the trajectory controller is applied to differentially driven robot system on the assumption that the trajectory planner be given.

  • PDF

운반체의 위치제어를 위한 내부.외부오차 제어기 설계 (Internal-External Error Controller Design for Position Control of Vehicle)

  • 정용욱;박종국
    • 제어로봇시스템학회논문지
    • /
    • 제13권12호
    • /
    • pp.1213-1221
    • /
    • 2007
  • In most case of previous research about vehicle control system, external error occurred by unexpected environmental situation was hardly considered. However, in this paper, to have more accurate position control of differential derive vehicle, we separate the error as an internal error and external error. To calculate the vehicle position in real time, we introduced the Dead-Reckoning algorithms and the simulation result show that the proposed internal and external error control system has fast and accurate position tracking with remarkable diminishment of orientation error. The results reported here can easily be extended to the control of similar type vehicle.

차륜형 이동로봇의 경로 계획과 자율 주행을 위한 하이브리드 시스템 모델과 제어 (Hybrid System Modeling and Control for Path Planning and Autonomous Navigation of Wheeled Mobile Robots)

  • 임미섭;임준홍
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권1호
    • /
    • pp.33-40
    • /
    • 2000
  • In this paper, an integrated method for the path planning and motion control of wheeled mobile robots using a hybrid system model and control is presented. The hybrid model including the continuous dynamics and discrete dynamics with the continuous and discrete state vector is derived for a two wheel driven mobile robot. The architecture of the hybrid control system for real time path planning and following is designed which has the 3-layered hierarchical structure : the discrete event system using the digital automata as the higher process, the continuous state system for the wheel velocity controls as the lower process, and the interface system as the interaction process between the continuous system as the low level and the discrete event system as the high level. The reference motion commands for autonomous navigation are generated by the abstracted motion in the discrete event system. The motion control tasks including the feasible path planning and autonomous motion control with various initial conditions are investigated as the applications by the simulation studies.

  • PDF

초음파 센서를 이용한 이동 로봇 시스템의 고속 실내 주행을 위한 하이브리드 시스템 제어기의 구현 (Implementation of Hybrid System Controller for High-Speed Indoor Navigation of Mobile Robot System Using the Ultra-Sonic Sensors)

  • 임미섭;임준홍;오상록;유범재;윤인식
    • 제어로봇시스템학회논문지
    • /
    • 제7권9호
    • /
    • pp.774-782
    • /
    • 2001
  • In this paper, we propose a new approach to the autonomous and high-speed indoor navigation of wheeled mobile robots using hybrid system controller. The hierarchical structure of hybrid system presented consists of high-level reasoning process and the low-level motion control process and the environmental interaction. In a discrete event system, the discrete states are defined by the user-defined constraints and the reference motion commands are specified in the abstracted motions. The hybrid control system applied for the nonholonomic mobile robots can combine the motion planning and autonomous navigation with obstacle avoidance in the indoor navigation problem. For the evaluation of the proposed algorithm, the algorithm is implemented to the two-wheel driven mobile robot system. The experimental results show that the hybrid system approach is an effective method for the autonomous navigation in indoor environments.

  • PDF

천장설치형 카메라 시스템을 사용한 장애물 회피용 이동 로봇의 경로설계법과 그 구현 (Path Design Method of Mobile Robot for Obstacle Avoidance Using Ceiling- mounted Camera System and Its Implementation)

  • 트란안킴;김광주;중탄람;김학경;김상봉
    • 한국정밀공학회지
    • /
    • 제21권8호
    • /
    • pp.73-82
    • /
    • 2004
  • In this paper, implementation of obstacle avoidance of a nonholonomic mobile robot in unstructured environment is introduced. To avoid obstacles, first, a reference collision-free path for the MR is generated off-line using HJB-based optimal path planning method. A controller is designed using integrator backstepping method for tracking the generated reference path. To implement the designed controller, a control system are needed and composed of camera system and PIC-based controller. The workspace is observed by a ceiling-mounted USB camera as part of an un-calibrated camera system. Thus the positional information of the MR is updated frequently and the MR can get the useful inputs for its tracking controller. The whole control system is realized by integrating a computer with PIC-based microprocessor using wireless communication: the image processing control module and path planning module serve as high level computer control while the device control serves as low level PIC microprocessor control. The simulation and experimental results show the effectiveness of the designed control system.

근사 자코비안 연산자를 이용한 탄성 지지부를 갖는 로봇 시스템의 제어 (Control of Robot System on the Elastic Base by Approximate Jacobian Operators)

  • 이선;이호길;황성호;이세헌
    • 한국정밀공학회지
    • /
    • 제18권10호
    • /
    • pp.45-52
    • /
    • 2001
  • This paper presents a study on the position tracking control of a robot system on the uncertain elastic base. The elastic bathe is a nonholonomic system but it can be changed into holonomic system, which is much easier to analyze, by modeling an elastic base as a virtual robot that has passive joints. Also, Jacobian operators, which represent the overall robot system including base movement, are defined and applied to the changed model. However, because base movements are not known, the exact Jacobian operators can't be estimated. The control algorithm proposed is that uses only Jacobians of a real robot as approximate Jacobian operators. Therefore the approximate Jacobian operators compensate the measured errors from external sensors. The proposed control strategy is evaluated by the simulation and experiment of a single-axis robot system on the elastic base.

  • PDF

하이브리드 시스템 제어 방법을 이용한 이동로봇의 자율 추행 동작제어 (Autonomous Navigation Motion Control of Mobile Robots using Hybrid System Control Method)

  • 이용미;임미섭;임준홍
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권5호
    • /
    • pp.182-189
    • /
    • 2002
  • This paper presents a framework of hybrid dynamic control systems for the motion control of wheeled mobile robot systems with nonholonomic constraints. The hybrid control system has the 3-layered hierarchical structure: digital automata for the higher process, mobile robot system for the lower process, and the interface as the interaction process between the continuous dynamics and the discrete dynamics. In the hybrid control architecture of mobile robot, the continuous dynamics of mobile robots are modeled by the switched systems. The abstract model and digital automata for the motion control are developed. In high level, the discrete states are defined by using the sensor-based search windows and the reference motions of a mobile robot in low level are specified in the abstracted motions. The mobile robots can perform both the motion planning and autonomous maneuvering with obstacle avoidance in indoor navigation problem. Simulation and experimental results show that hybrid system approach is an effective method for the autonomous maneuvering in indoor environments