• 제목/요약/키워드: Nonholonomic mobile robot

검색결과 78건 처리시간 0.023초

하이퍼볼릭 함수 기반의 퍼지 슬라이딩 모드 제어를 이용한 2바퀴 이동로봇의 경로 추종제어 (Trajectory Tracking Control for Two Wheeled Mobile Robot using Fuzzy Sliding Mode Control based Hyperbolic Function)

  • 임종욱;이상재;채창현
    • 한국기계가공학회지
    • /
    • 제13권3호
    • /
    • pp.28-34
    • /
    • 2014
  • In this paper, we propose a trajectory tracking controller for a two-wheeled mobile robot (WMR) with nonholonomic constraints using a fuzzy sliding-mode controller-based hyperbolic function. The proposed controller is composed of two separate controllers. The sliding-mode controller is used for attitude control of the WMR, and the fuzzy controller-based hyperbolic function is designed to adjust the reach time of the sliding-mode control. Simulation results on a linear and a circular trajectory show that the proposed controller improves the control performance. The proposed controller reduces the reach time by as much as 47% compared to the controller proposed by Xie et al.

하이브리드 시스템의 기준동작 구성과 생성에 의한 차륜형 이동로봇의 자율 벽면-주행 알고리즘 (Algorithm for Autonomous Wall-Following of Wheeled Mobile Robots Using Reference Motion Synthesis and Generation of Hybrid System)

  • 임미섭;임준홍
    • 제어로봇시스템학회논문지
    • /
    • 제6권7호
    • /
    • pp.586-593
    • /
    • 2000
  • In this paper we propose a new approach to the autonomous wall-following of wheeled mobile robots using hybrid system reference motion synthesis and generation. The hybrid system approach is in-troduced to the motion control of nonholonomic mobile robots for the indoor navigation problems. In the dis-crete event system the discrete states are defined by the user-defined constraints and the reference mo-tion commands are specified in the abstracted motions. The hybrid control system applied for the non-holonomic mobile robots can combine the motion planning and autonomous navigation with obstacle avoid-ance for the indoor navigation problem. Simulation results show that hybrid system approach is an effective method for the autonomous navigation in indoor environments.

  • PDF

차륜형 이동로봇의 경로 계획과 자율 주행을 위한 하이브리드 시스템 모델과 제어 (Hybrid System Modeling and Control for Path Planning and Autonomous Navigation of Wheeled Mobile Robots)

  • 임미섭;임준홍
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권1호
    • /
    • pp.33-40
    • /
    • 2000
  • In this paper, an integrated method for the path planning and motion control of wheeled mobile robots using a hybrid system model and control is presented. The hybrid model including the continuous dynamics and discrete dynamics with the continuous and discrete state vector is derived for a two wheel driven mobile robot. The architecture of the hybrid control system for real time path planning and following is designed which has the 3-layered hierarchical structure : the discrete event system using the digital automata as the higher process, the continuous state system for the wheel velocity controls as the lower process, and the interface system as the interaction process between the continuous system as the low level and the discrete event system as the high level. The reference motion commands for autonomous navigation are generated by the abstracted motion in the discrete event system. The motion control tasks including the feasible path planning and autonomous motion control with various initial conditions are investigated as the applications by the simulation studies.

  • PDF

Object-Transportation Control of Cooperative AGV Systems Based on Virtual-Passivity Decentralized Control Algorithm

  • Suh, Jin-Ho;Lee, Young-Jin;Lee, Kwon-Soon
    • Journal of Mechanical Science and Technology
    • /
    • 제19권9호
    • /
    • pp.1720-1730
    • /
    • 2005
  • Automatic guided vehicle in the factory has an important role to advance the flexible manufacturing system. In this paper, we propose a novel object-transportation control algorithm of cooperative AGV systems to apply decentralized control to multiple AGV systems. Each AGV system is under nonholonomic constraints and conveys a common object-transportation in a horizontal plain. Moreover it is shown that cooperative robot systems ensure stability and the velocities of augmented systems convergence to a scaled multiple of each desired velocity field for cooperative AGV systems. Finally, the application of proposed virtual passivity-based decentralized control algorithm via system augmentation is applied to trace a circle. Finally, the simulation and experimental results for the object-transportation by two AGV systems illustrates the validity of the proposed virtual-passivity decentralized control algorithm.

전방향 이동성을 갖는 안정한 볼봇 개발 (Development of Stable Ballbot with Omnidirectional Mobility)

  • 박재한;김순철;이수영
    • 제어로봇시스템학회논문지
    • /
    • 제19권1호
    • /
    • pp.40-44
    • /
    • 2013
  • The ball-shaped mobile robot, so called ballbot has single point contact on ground and low energy consumption in motion because of the reduced friction. In this paper, a new ballbot is presented, which has omnidirectional mobile platform inside of it as a driving system. Thus the ballbat has omnidirectional mobility without nonholonomic constraints. Kinematics and inverse kinematics of the ballbat is derived also in this paper.

Adaptive Actor-Critic Learning of Mobile Robots Using Actual and Simulated Experiences

  • Rafiuddin Syam;Keigo Watanabe;Kiyotaka Izumi;Kazuo Kiguchi;Jin, Sang-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.43.6-43
    • /
    • 2001
  • In this paper, we describe an actor-critic method as a kind of temporal difference (TD) algorithms. The value function is regarded as a current estimator, in which two value functions have different inputs: one is an actual experience; the other is a simulated experience obtained through a predictive model. Thus, the parameter´s updating for the actor and critic parts is based on actual and simulated experiences, where the critic is constructed by a radial-basis function neural network (RBFNN) and the actor is composed of a kinematic-based controller. As an example application of the present method, a tracking control problem for the position coordinates and azimuth of a nonholonomic mobile robot is considered. The effectiveness is illustrated by a simulation.

  • PDF

유전 및 면역 알고리즘을 이용한 2자유도 구륜 이동 로봇에 대한 PD-Fuzzy 제어기 설계 (A PD-Fuzzy Controller Design of 2 D.O.F. Wheeled Mobile Robot Using Genetic and Immune Algorithm)

  • 김성회;김기열;임호;박종국
    • 전자공학회논문지CI
    • /
    • 제37권5호
    • /
    • pp.19-28
    • /
    • 2000
  • 구륜 이동 로봇(Wheeled Mobile Robot)은 제어기 설계에 있어 Nonholonomic Constraints등에 의해 많은 어려움을 지닌다. 본 논문에서는 구륜 이동 로봇의 제어를 위해 PD와 퍼지 시스템이 결합된 제어기가 설계되며, 유전알고리즘에 기초되어 최적 퍼지시스템이 형성된다. 시스템의 최적화 과정은 독립적으로 수행되는 여러 단계들로 이루어지며, 각 단계마다 다른 형식의 알고리즘이 적용되며 효율적 탐색을 위해 Niche알고리즘 및 면역 알고리즘이 결합되어 적용된다. 각 출력용어집합은 최적의 원소들을 얻기 위해 수행되는 탐색에 의해 그 구성이 변화되며, 변화된 출력용어집합의 구성 원소와 관계된 규칙기반이 동시에 조절된다. 출력용어집합의 추가된 원소들 및 조절된 규칙에 대한 적합성이 평가되고 제어 성능의 향상에 기여하지 못한 부분들은 제거된다. 출력변수의 용어집합 및 규칙에 대한 반복적 조절 과정이 완료된 후, 입력 소속함수들에 대한 조정이 제약조건을 가지고 수행되며, 진화연산에 의한 출력소속함수들에 대한 조정이 수행된다.

  • PDF

이동 로봇의 추종 제어를 위한 이중 슬라이딩 표면에 기반한 슬라이딩 모드 제어 (Double Sliding Surfaces based on a Sliding Mode Control for a Tracking Control of Mobile Robots)

  • 이준구;최윤호;박진배
    • 제어로봇시스템학회논문지
    • /
    • 제19권6호
    • /
    • pp.495-500
    • /
    • 2013
  • This paper proposes a double sliding surfaces based on a sliding mode control for a tracking control of nonholonomic mobile robots in the Cartesian coordinates. In order to remove sliding surface constraints, we design the additional sliding surface for the heading angle with respect to the newly defined coordinates. Then, we define the switching law based on the posture error to combine the designed sliding surface with the previous one. By using the double sliding surfaces and the switching law, we obtain the control law for arbitrary trajectories. It is proved that the position tracking error and the heading direction error asymptotically converge to zero, respectively, with the Lyapunov stability theory. Finally, through computer simulations, we demonstrate the effectiveness of the proposed control system.