• 제목/요약/키워드: Nonequilibrium Chemical Reaction

검색결과 12건 처리시간 0.026초

Rovibrational Energy Transitions and Coupled Chemical Reaction Modeling of H+H2 and He+H2 in DSMC

  • Kim, Jae Gang
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권3호
    • /
    • pp.347-359
    • /
    • 2015
  • A method of describing the rovibrational energy transitions and coupled chemical reactions in the direct simulation Monte Carlo (DSMC) calculations is constructed for $H(^2S)+H_2(X^1{\Sigma}_g)$ and $He(^1S)+H_2(X^1{\Sigma}_g)$. First, the state-specific total cross sections for each rovibrational states are proposed to describe the state-resolved elastic collisions. The state-resolved method is constructed to describe the rotational-vibrational-translational (RVT) energy transitions and coupled chemical reactions by these state-specific total cross sections and the rovibrational state-to-state transition cross sections of bound-bound and bound-free transitions. The RVT energy transitions and coupled chemical reactions are calculated by the state-resolved method in various heat bath conditions without relying on a macroscopic properties and phenomenological models of the DSMC. In nonequilibrium heat bath calculations, the state-resolved method are validated with those of the master equation calculations and the existing shock-tube experimental data. In bound-free transitions, the parameters of the existing chemical reaction models of the DSMC are proposed through the calibrations in the thermochemical nonequilibrium conditions. When the bound-free transition component of the state-resolved method is replaced by the existing chemical reaction models, the same agreement can be obtained except total collision energy model.

A Chemical Kinetic Model Including 54 Reactions for Modeling Air Nonequilibrium Inductively Coupled Plasmas

  • Yu, Minghao;Wang, Wei;Yao, Jiafeng;Zheng, Borui
    • Journal of the Korean Physical Society
    • /
    • 제73권10호
    • /
    • pp.1519-1528
    • /
    • 2018
  • The objective of the present study is the development of a comprehensive air chemical kinetic model that includes 11 species and 54 chemical reactions for the numerical investigation of air nonequilibrium inductively coupled plasmas. The two-dimensional, compressible Navier-Stokes equations coupled with the electromagnetic-field equations were employed to describe the fundamental characteristics of an inductive plasma. Dunn-Kangs 32 chemical-reaction model of air was reconstructed and used as a comparative model. The effects of the different chemical kinetic models on the flow field were analyzed and discussed at identical/different working pressures. The results theoretically indicate that no matter the working pressure is low or high, the use of the 54 chemical kinetic model presented in this study is a better choice for the numerical simulation of a nonequilibrium air ICP.

NUMERICAL METHODS FOR COMPUTATIONS OF NONEQUILIBRIUM HYPERSONIC FLOW AROUND BODIES

  • Park, Tae-Hoon;Kim, Pok-Son
    • Journal of applied mathematics & informatics
    • /
    • 제9권1호
    • /
    • pp.1-13
    • /
    • 2002
  • In this paper we present numerical methods fur computations of nonequilibrium hypersonic flow of air around bodies including chemical reaction effects and present numerical result of the flow over concave corners. We developed implicit finite difference method to overcome numerical difficulties with the lack of resolution behind the shock and near the body. Using our method we were able to find details of the flow properties near the shock and body and were able to continue the computation of the flow for a long distance from the corner of the body.

비평형 극음속 유동에서 구에 대한 충격파 이탈거리 계산 (CALCULATION OF SHOCK STAND-OFF DISTANCE FOR A SPHERE IN NONEQUILIBRIUM HYPERSONIC FLOW)

  • Furudate, M. Ahn
    • 한국전산유체공학회지
    • /
    • 제17권4호
    • /
    • pp.69-74
    • /
    • 2012
  • Hypersonic flowfields over a sphere is calculated by using a nonequilibrium flow solver. The flow solver features a two-temperature model and finite rate chemical reaction models to describe nonequilibrium thermochemical processes. For the purpose of validation, the calculated shock stand-off distance is compared with the experimental data which is measured in a ballistic range facility. The present nonequilibrium calculation well reproduced the experimental shock stand-off distance in the cases where the experimental flowfields are expected to be nearly equilibrium, as well as in the cases to be nonequilibrium flowfields in the velocity range 4000 to 5500 m/s.

Reflections of shocks in nonequilibrium flow of air

  • Park, Tae-Hoon
    • 대한수학회논문집
    • /
    • 제10권3호
    • /
    • pp.767-781
    • /
    • 1995
  • In this paper we present computation of a reflected shock in the hypersonic flow of air with chemical reactions. We consider two dimensional steady inviscid hypersonic flow of air around bodies including chemical reaction effects. At a high Mach number, a strong shock is formed in front of the body when a wedge is placed against the flow. In front of the shock, temperature and pressure increase greatly and the flow is in nonequilibrium state. If the shock hits a wall, then a reflected shock is formed in the nonequilibrium flow region. Behind this reflected shock, the temperature and pressure are very high. We carry out the computation of the reflected shock and the flow behind it. The jump conditions at the reflected shock are presented. A technique combining smooth transforms of domain and implicit difference methods is used to overcome numerical difficulties associated with the lack of resolution behind the shock and near the body.

  • PDF

비예혼합 대향류 화염에서 연소 분위기 압력 영향 연구 (Effects of Combustion Atmosphere Pressure on Non-premixed Counterflow Flame)

  • 이기만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권8호
    • /
    • pp.853-862
    • /
    • 2006
  • The present study is numerically investigated the flame structure of non-premixed counterflow jet flames using the laminar flamelet model Detailed flame structures with the fuel composition of 40% CO, 30% $H_2$. 30% $N_2$ and an oxidizer composition of 79% $N_2$ and 21% $O_2$ in a non-premixed counterflow flame are studied numerically. This study is aimed to investigate the effects of axial velocity gradient and combustion atmosphere pressure on flame structure. The results show that the role of axial velocity gradient on combustion processes is globally opposite to that of combustion atmosphere pressure. That is, chemical nonequilibrium effects become dominant with increasing axial velocity gradient, but are suppressed with increasing ambient pressure. Also, the flame strength is globally weakened by the increase of axial velocity gradient but is augmented by the increase of ambient pressure. However, flame extinction is described better on the basis of only chemical reaction and in this study axial velocity gradient and ambient pressure play a similar role conceptually such that the increase of axial velocity gradient and ambient pressure cause flame not to be extinguished and extend the extinction limit, respectively. Consequently it is suggested that a combustion process like flame extinction is mainly influenced by the competition between the radical formation reaction and the third-body recombination reaction.

Nonequilibrium Distribution Function Theory of Many-Particle Effects in the Reversible Reactions of the Type A+B ↔ C+B

  • Lee, Jin-Uk;Uhm, Je-Sik;Lee, Woo-Jin;Lee, Sang-Youb;Sung, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권12호
    • /
    • pp.1986-1990
    • /
    • 2005
  • We study the relaxation kinetics of reversible reactions of the type A + B $^\leftarrow_\rightarrow$ C + B by applying the manyparticle kernel theory, which we have developed to investigate many particle effects on general diffusioninfluenced reactions. It is shown that for the target model, where A and C molecules are immobile and their interconversion is induced by the encounter with the B molecules that are present in much excess, the manyparticle kernel theory gives a result that coincides with the known exact result.

Numerical Simulation of Projectiles in Detonable Gases

  • Moon, Su-Yeon;Lee, Chooung-Won;Sohn, Chang-Hyun
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2001년도 제17회 학술발표회 논문초록집
    • /
    • pp.43-47
    • /
    • 2001
  • A numerical parametric study is conducted to simulate shock-induced combustion with a variation in freestream conditions. The analysis is limited to inviscid flow and includes chmical nonequilibrium. A steady combustion front is established if the freestream Mach number is above the Chapman-Jouguet speed of the mixture. On the other, an unsteady reaction fi:ont is established if the freestream Mach number is below or at the Chapman-Jouguet speed of the mixture. The three cases have been simulated for Machs 4.18, 5.11, and 6.46 with a projectile diameter of 15 mm. Machs 4.18 and 5.11 shows an unsteady reaction front, whereas Mach 6.46 represents a steady reaction front. Thus Chapman-Jouguet speed is one of deciding factor for the instabilities to trigger. The instabilities of the chemical front with a variation of projectiles diameters will be investigated.

  • PDF

로타리 킬른 소각로 고도 설계를 위한 연구 III : 3차원 CC1$_4$/CH$_4$기상난류 반응 모델 (A Study for the Advanced Design of Rotary Kiln Incinerator III : 3-Dimensional CC1$_4$/CH$_4$Gas-phase Turbulent Reaction Model)

  • 엄태인;장동순;채재우
    • 에너지공학
    • /
    • 제2권1호
    • /
    • pp.54-67
    • /
    • 1993
  • CC1$_4$/CH$_4$/공기로 이루어진 예혼합 화염에 대한 2종류의 난류반응 모델을 Dow 케미칼사의 3차원 로타리 킬른 소각로에 적용하여 그 타당성을 확인하였다. 첫번째 난류반응 모델은 반응률이 반응물질의 난류혼합 속도에 지배된다는 fast chemistry 모델(모델 1)이고, 두번째 모델은 비평형 난류반응 모델(모델 2)로서 열량이 낮고 화염 억제 작용이 있는 산업폐기물인, CC1$_4$존재에 따른 반응감속을 연소속도 자료에 의해 고려한 모델이다. 수치해석의 결과에 의하면 CC1$_4$의 화염억제 작용을 적절히 고려한 두번째 비평형 난류반응 모델은 Dow 케미칼사 로타리 킬른의 출구에서 실험적으로 나타나는 농도 성층화 현상을 정성적으로 규명할 수 있었으며, CC1$_4$/CH$_4$몰비 변화에 따른 연소반응 지연 양상도 확인할 수 있었다. 기타 두 모델에 대한 비교 및 유동의 결과를 자세히 제시하였다.

  • PDF

Micro-gap DBD Plasma and Its Applications

  • Zhang, Zhitao;Liu, Cheng;Bai, Mindi;Yang, Bo;Mao, Chengqi
    • 동굴
    • /
    • 제76호
    • /
    • pp.37-42
    • /
    • 2006
  • The Dielectric Barrier Discharge (DBD) is a nonequilibrium gas discharge that is generated in the space between two electrodes, which are separated by an insulating dielectric layer. The dielectric layer can be put on either of the two electrodes or be inserted in the space between two electrodes. If an AC or pulse high voltage is applied to the electrodes that is operated at applied frequency from 50Hz to several MHz and applied voltages from a few to a few tens of kilovolts rms, the breakdown can occur in working gas, resulting in large numbers of micro-discharges across the gap, the gas discharge is the so called DBD. Compared with most other means for nonequilibrium discharges, the main advantage of the DBD is that active species for chemical reaction can be produced at low temperature and atmospheric pressure without the vacuum set up, it also presents many unique physical and chemical process including light, heat, sound and electricity. This has led to a number of important applications such as ozone synthesizing, UV lamp house, CO2 lasers, et al. In recent years, due to its potential applications in plasma chemistry, semiconductor etching, pollution control, nanometer material and large area flat plasma display panels, DBD has received intensive attention from many researchers and is becoming a hot topic in the field of non-thermal plasma.