Browse > Article
http://dx.doi.org/10.3938/jkps.73.1519

A Chemical Kinetic Model Including 54 Reactions for Modeling Air Nonequilibrium Inductively Coupled Plasmas  

Yu, Minghao (Faculty of Mechanical and Precision Instrument Engineering, Xi'an University of Technology)
Wang, Wei (Faculty of Mechanical and Precision Instrument Engineering, Xi'an University of Technology)
Yao, Jiafeng (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics)
Zheng, Borui (School of Automation and Information Engineering, Xian University of Technology)
Abstract
The objective of the present study is the development of a comprehensive air chemical kinetic model that includes 11 species and 54 chemical reactions for the numerical investigation of air nonequilibrium inductively coupled plasmas. The two-dimensional, compressible Navier-Stokes equations coupled with the electromagnetic-field equations were employed to describe the fundamental characteristics of an inductive plasma. Dunn-Kangs 32 chemical-reaction model of air was reconstructed and used as a comparative model. The effects of the different chemical kinetic models on the flow field were analyzed and discussed at identical/different working pressures. The results theoretically indicate that no matter the working pressure is low or high, the use of the 54 chemical kinetic model presented in this study is a better choice for the numerical simulation of a nonequilibrium air ICP.
Keywords
Inductively coupled plasma; Chemical kinetic model; Air; Numerical modeling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. I. Kolobov, G. J. Parker and W. N. G. Hitchon, Phys. Rev. E. 53, 1110 (1996).   DOI
2 S. A. Vasil'eviskii and A. F. Kolesnikov, Fluid Dynamics 35, 769 (2000).   DOI
3 S. W. Xue, P. Proulx and M. I. Boulos, J. Phys. D: Appl. Phys. 34, 1897 (2001).   DOI
4 V. Colombo, E. Ghedini and P. Sanibondi, J. Phys. D: Appl. Phys. 43, 105202 (2010).   DOI
5 G. Degrez, D. V. Abeele, P. Barbante and B. Bottin, Int. J. Numer. Method H 1414, 538 (2004).
6 T. Sumi, K. Fujita, T. Kurotaki, T. Ito, M. Mizuno and K. Ishida, Trans. Japan Soc. Aero. Space Sci. 48, 40 (2005)   DOI
7 M. G. Dunn and S-W. Kang, NASA Contractor Report, NASA-CR-2232, 1973.
8 M. E. Morsli and P. Proulx, J. Phys. D: Appl. Phys. 40, 4810 (2007).   DOI
9 C. Park, Nonequilibrium Hypersonic Aerothermodynamics (Wiley, New York, 1990).
10 C. Park, R. L. Jaffe and H. Partridge, J. Thermophys. Heat Trans. 15, 76 (2001).   DOI
11 M. Yu, H. Kihara, K. Abe and Y. Takahashi, J. Korean Phys. Soc. 66, 1833 (2015).   DOI
12 M. Yu, Y. Takahashi, H. Kihara, K. Abe, K. Yamada, T. Abe and S. Miyatani, Plasma Sci. Tech. 17, 749 (2015).   DOI
13 Y. Takahashi, H. Kihara and K. Abe, J. Thermophys. Heat Trans. 24, 31 (2010).   DOI
14 C. Park, J. Thermophys. Heat Trans. 7, 385 (1993).   DOI
15 R. N. Gupta, J. M. Yos, R. A. Thompson and K-P. Lee, NASA Reference Publication 1232, Report No. NASA Reference Publication 1232, 1990.
16 K. Kitamura, Comm. Comput. Phys. 10, 90 (2011).   DOI
17 M. Capitelli, D. Bruce and A. Laricchiuta, Fundamental aspects of plasma chemical physics (Springer, New York, Heidelberg, Dordrecht, London, 2014).
18 A. Jameson and S. Yoon, AIAA J. 25, 929 (1987).   DOI
19 T. R. A. Bussing and E. M. Murman, AIAA J. 26, 1070 (1988).   DOI
20 Mayuko Tanaka, Kazuhiko Yamada, Yusuke Takahashi, Minghao Yu and A. Tezuka, in Proceedings of the 61th Space Science and Technology Union Symposium, Niigata, Japan, 2017 (The Japan Society for Aeronautics and Space Sciences, 2017).
21 S. B. Punjabi, N. K. Joshi, H. A. Mangalvedekar, B. K. Lande, A. K. Das and D. C. Kothari, Phys. Plasmas 19, 012108 (2012).   DOI
22 T. Suzuki, K. Fujita, K. Ando and T. Sakai, J. Thermophys. Heat Tr. 22, 382 (2008).   DOI
23 S. Miyatani, in Proceedings of the 58th Space Science and Technology Union Symposium, Nagasaki, Japan, 2014 (The Japan Society for Aeronautics and Space Sciences, 2014).
24 Y. Tanaka, T. Nagumo, H. Sakai, Y. Uesugi, Y. Sakai and K. Nakamura, J. Phys. D: Appl. Phys. 43, 265201 (2010).   DOI
25 M. K. S. Tial, Y. Tanaka, Y. Maruyama, T. Tsuchiya, Y. Uesugi and T. Ishijima, Plasma Chem. Plasma Process. 37, 857 (2017).   DOI
26 J. Mostaghimi, P. Proulx and M. I. Boulos, J. Appl. Phys. 61, 1753 (1987).   DOI
27 J. H. Seo, J-M. Park and S. H. Hong, J. Korean Phys. Soc. 45, 94 (2009).