• Title/Summary/Keyword: Nondestructive quality measurement

Search Result 53, Processing Time 0.017 seconds

Nondestructive Measurement of Chemical Compositions in Polished Rice and Brown Rice using NIR Spectra of Hulled Rice acquired in Transmittance and Reflectance Modes (정조 상태에서 투과법과 반사법을 이용한 백미 및 현미 성분의 비파괴 측정)

  • Kwon Young-Rip;Cho Seung-Hyun;Song Young-Eun;Lee Jae-Heung;Cho Chong-Hyeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.451-457
    • /
    • 2006
  • The purpose of this study is to measure fundamental data required for the prediction of rice quality and to develop regression models to predict protein, amylose, moisture and fatty acid contents, and Toyo taste meter value (TTMV) of brown and polished rice from hulled rice NIR spectra. NIR spectra of hulled rice measured in transmittance mode (850-1050 nm) and in reflectance mode (400-2500 nm) were used to predicted chemical compositions of brown rice and polished rice. For most chemicals, the transmittance spectra could provide better calibration results than the reflectance ones. Beside the Toyo taste meter value (TTMV), the hulled rice spectra could predict chemical contents with the determination coefficients higher than 0.8. Spectra of hulled rice measured in transmittance mode could be used for the prediction of chemical compositions in brown rice and polished rice precisely. However, taste value of polished rice was a constituent that was hardly to be predicted.

Applicability of Vegetation Index and SPAD Reading to Nondestructive Diagnosis of Rice Growth and Nitrogen Nutrition Status (식생지수와 SPAD를 이용한 벼 생육 및 질소영양상태의 비파괴적 진단 가능성 검토)

  • Kim Min-Ho;Shin Jin-Chul;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.6
    • /
    • pp.369-377
    • /
    • 2005
  • Precise application of topdressing nitrogen (N) fertilizer is indispensible for securing high yield and good quality of rice and minimizing N losses to the environment as well. For precise N management, growth and nitrogen nutrition status (NNS) should be diagnosed rapidly and accurately. The objective of the study was to evaluate the applicability of vegetation index (VI) calculated from hyperspectral canopy reflectance measurement and SPAD reading to nondestructive in situ diagnosis of growth and NNS of rice. Canopy reflectance, SPAD read­ing, growth parameters, and NNS characteristics were measured from various N treatments to evaluate the relationships among them for two cropping seasons from 2001 to 2002. The correlation coefficient of VIs with variables of growth and NNS increased positively as rice canopy became more closed. Regardless of growth stages, VIs had significantly high correlations with LAI, shoot dry weight (DW), shoot N content and nitrogen nutrition index (NNI). Those correlation coefficients increased steadily before heading stage as rice grew up. However, tiller number and leaf N concentration showed significantly high correlations with VIs only at and after panicle initiation stage (PIS). Among the VIs, RVIgreen had significantly higher correlation with the measured parameters than the other VIs: it showed correlation coefficients greater than 0.8 with leaf and shoot N concentration and DW, and much higher coefficients greater than 0.9 with LAI, shoot N content, and NNI. At LAI of below 2.5, VIs had non-significant or low correlations with the growth and NNS indicators due to the background effects. SPAD reading had significantly high correlation with leaf N concentration and NNI at each growth stage. In addition, it had significant correlations with variables of growth and NNS at PIS and booting stage, particularly, at booting stage. Though SPAD reading had a significantly high correlation value at a given growth stage in each year, it showed very weak relationship with variables of growth and NNS when pooled across growth stages and years. In conclusion, RVIgreen was found to be the most reliable VI to estimate the growth and NNS of rice around at PIS, but SPAD reading had much limitations.

DISEASE DIAGNOSED AND DESCRIBED BY NIRS

  • Tsenkova, Roumiana N.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1031-1031
    • /
    • 2001
  • The mammary gland is made up of remarkably sensitive tissue, which has the capability of producing a large volume of secretion, milk, under normal or healthy conditions. When bacteria enter the gland and establish an infection (mastitis), inflammation is initiated accompanied by an influx of white cells from the blood stream, by altered secretory function, and changes in the volume and composition of secretion. Cell numbers in milk are closely associated with inflammation and udder health. These somatic cell counts (SCC) are accepted as the international standard measurement of milk quality in dairy and for mastitis diagnosis. NIR Spectra of unhomogenized composite milk samples from 14 cows (healthy and mastitic), 7days after parturition and during the next 30 days of lactation were measured. Different multivariate analysis techniques were used to diagnose the disease at very early stage and determine how the spectral properties of milk vary with its composition and animal health. PLS model for prediction of somatic cell count (SCC) based on NIR milk spectra was made. The best accuracy of determination for the 1100-2500nm range was found using smoothed absorbance data and 10 PLS factors. The standard error of prediction for independent validation set of samples was 0.382, correlation coefficient 0.854 and the variation coefficient 7.63%. It has been found that SCC determination by NIR milk spectra was indirect and based on the related changes in milk composition. From the spectral changes, we learned that when mastitis occurred, the most significant factors that simultaneously influenced milk spectra were alteration of milk proteins and changes in ionic concentration of milk. It was consistent with the results we obtained further when applied 2DCOS. Two-dimensional correlation analysis of NIR milk spectra was done to assess the changes in milk composition, which occur when somatic cell count (SCC) levels vary. The synchronous correlation map revealed that when SCC increases, protein levels increase while water and lactose levels decrease. Results from the analysis of the asynchronous plot indicated that changes in water and fat absorptions occur before other milk components. In addition, the technique was used to assess the changes in milk during a period when SCC levels do not vary appreciably. Results indicated that milk components are in equilibrium and no appreciable change in a given component was seen with respect to another. This was found in both healthy and mastitic animals. However, milk components were found to vary with SCC content regardless of the range considered. This important finding demonstrates that 2-D correlation analysis may be used to track even subtle changes in milk composition in individual cows. To find out the right threshold for SCC when used for mastitis diagnosis at cow level, classification of milk samples was performed using soft independent modeling of class analogy (SIMCA) and different spectral data pretreatment. Two levels of SCC - 200 000 cells/$m\ell$ and 300 000 cells/$m\ell$, respectively, were set up and compared as thresholds to discriminate between healthy and mastitic cows. The best detection accuracy was found with 200 000 cells/$m\ell$ as threshold for mastitis and smoothed absorbance data: - 98% of the milk samples in the calibration set and 87% of the samples in the independent test set were correctly classified. When the spectral information was studied it was found that the successful mastitis diagnosis was based on reviling the spectral changes related to the corresponding changes in milk composition. NIRS combined with different ways of spectral data ruining can provide faster and nondestructive alternative to current methods for mastitis diagnosis and a new inside into disease understanding at molecular level.

  • PDF