• Title/Summary/Keyword: Nondestructive petrological analysis

Search Result 6, Processing Time 0.019 seconds

Source rock investigation for the Gyeongju Seated Stone Buddha with Square Pedestals in the Blue House using nondestructive petrological analysis (청와대 소재 경주 방형대좌 석조여래좌상의 암석학적 비파괴분석을 통한 산지해석)

  • Lee, Myeong Seong;Yoo, Ji Hyun;Kim, Jiyoung
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.567-578
    • /
    • 2018
  • A nondestructive petrological investigation was carried out to identify the original location and form of the Gyeongju Seated Stone Buddha with Square Pedestals in the Blue House (so-called Stone Buddha in the Blue House). The Statue is a representative stone Buddha statue of Silla (9th century) but its original location is controversial and some parts were missing. Based on the petrological observation, magnetic susceptibility and gamma spectrometry, its stone material was identified as medium-grained alkali feldspar granite. This kind of granites are widely found in the Namsan, Gyeongju. It is very likely that the Namsan granites are the source of rock of the Stone Buddha. The Yudeoksa (Igeosaji temple site) and Namsan are possible to be the original home of the Buddha Statue since there are petrologically identical alkali feldspar granite outcrop distributed in Namsan and stone heritage made of the same stone type in both places. An investigation on the square middle stone base in the Chuncheon National Museum reveals that it is less likely to be the missing part of the Buddha statue as the stone base is fine- to medium-grained pink feldspar granite and has different magnetic susceptibility from the Buddha statue. This study confirmed the contribution and significance of petrological investigation to identification of stone heritage in Korea.

Material Characteristics and Nondestructive Deterioration Assessment for the Celestial Chart Stone, Korea (천상열차분야지도 각석의 재질특성과 비파괴 훼손도 평가)

  • Yoo, Ji Hyun;Lee, Myeong Seong;Choie, Myoungju;Ahn, Yu Bin;Kim, Yuri
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.207-222
    • /
    • 2018
  • Celestial Chart Stones (original and reproduction) in the National Palace Museum are representative scientific cultural heritage of Korea. Material analysis and nondestructive deterioration assessment were conducted for long-term preservation of these stones. Material analysis revealed that the original was composed of slate and the reproduction was made of dolostone. The original consists of quartz, mica, dolomite minerals, while the reproduction was made up of dolomite, calcite and forsterite. Major deterioration factors of the original stone were cracks and breakouts. In case of the reproduction, scratches and artificial materials were mainly observed. The green and black surface contaminants present at the sides and back of the two celestial chart stones were interpreted as resin-based paint materials. The physical property evaluation using ultrasonic velocity showed a low velocity in the upper left side of the original, while the front right side of the reproduction showed a weak property. Meanwhile, the To-Tc method using ultrasonic velocity was applied to major cracks that impede stability of the original. As a result, it has been calculated that the beginning and the center of the crack are the deepest.

Fundamental Parameter 법에 의한 만장굴용암 쌍자석주의 형광X선분포

  • ;Ko, Mun-Ok;Kim, Gyung-Sik
    • Journal of the Speleological Society of Korea
    • /
    • v.19 no.20
    • /
    • pp.29-62
    • /
    • 1989
  • Cheju Island, which was formed by volcanic activity, is an oval in its shape with the major axis 80km and the minor axis of 40km. The island holds in its heart Mt. Hanala rising 1,950m above the sea. Petrological study of this volcanic island has been made actively by Sang-Man Lee, Chong-Kwang Won and Moon-Won Li. The chronological measurements of the island by Chong-Kwan Won and Moon-Won Lee showed that it is composed of Sanbangsan trachytes and Backlokdam trachytes(25,000 year ago). These reports are based on the chemical analysis and the rediometric chronological measurements on the ground. However, there has been no reports about the inside of caves. We made an (composition) analysis of the inside of Manjang Cave by the fundamental parameter method in X-ray fluorescence spectrometry. The fundamental parameter method in X-ray fluorescence spectrometry is nondestructive analysis. and it enables us to make the values processed by a computer. The results obtained by this methods are as follows: SiO$_2$(49%), $Al_2$O$_3$(17%), Fe$_2$O$_3$(13%), CaO(8.1%), MgO(5.5%), Na2O(3.6%), TiO$_2$(2.1%), $K_2$O(0.86%), P$_2$O$_{5}$(0.28%), and MnO(0.20%) respectively. The data obtained by the fundamental parameter method in X-ray fluorescene was compared with the data provided by Chong-Kwan Won and Moon-Won Lee. Our measurement was made by K-Ar-method in cooperation with T. ITAYA. The samples are of 30,000-420,000 years ago. The composition of the values of our underground analysis with the existing values obtained by the analyses on the ground produced new data about Cehju volcanic island.d.

  • PDF

Manjang Cave of Twinrock Composition obtained by Fundamen Parameter Method in X-Ray Fluorescence Spectrometry (Fundamental Parameter 법에 의한 만장굴 용암 석주의 형광X선분석)

  • SAWA, ISAO
    • Journal of the Speleological Society of Korea
    • /
    • v.21 no.22
    • /
    • pp.17-56
    • /
    • 1990
  • Cheju Island, which was formed by volcanic activity, is an oval in its shape with the major axis of 80km and the minor axis of 40km. The island holds in its heart Mt. Hanla rising 1,950m above the sea. Petrological study of this volcanic island has been made actively by Sang-Man Lee, Chong-Kwan won and Moon-Won Lee. The chronological measurements of the island by Chong-Kwan Won and Moon-Won Lee showed that it is composed of Sanbangsan trachytes and Backlokdam trachytes(25,000 year ago). These reports are based on the chemical analysis and the rediometric chronological measurements on the ground. However, there has been no reports about the inside of caves. We made an (composition) analysis of the inside of Manjang Cave by the fundamental parameter method in X-ray fluorescence spectrometry. The fundamental parameter method in X-ray fluorescence spectrometry is nondestructive analysis, and it enables us to make the values processed by a computer. The results obtained by this methods are as follows : SiO$_2$(49%), $Al_2$O$_3$(17%), Fe$_2$O$_3$(13%), CaO(8.1%), MgO(5.5%), Na$_2$O(3.6%), TiO$_2$(2.1%), $K_2$O(0.86%), P$_2$O$_{5}$(0.28%), and MnO(0.20%), respectively. The data obtained by the fundamental parameter method in X-ray fluorescence was compared with the data provided by Chong-Kwan and Moon-Won Lee. Our measurement was made by K-Ar-method in cooperation with T.ITAYA. The samples are of 30,000~420,000 year ago. The composition of the values of our underground analysis with the existing values obtained by the analyses on the ground produced new data about Cheju volcanic island.d.

  • PDF

Petrological Characteristics and Nondestructive Deterioration Assessments for Foundation Stones of the Sebyeonggwan Hall in Tongyeong, Korea (통영 세병관 초석의 암석학적 특성 및 비파괴 손상평가)

  • Han, Doo Roo;Kim, Sung Han;Park, Seok Tae;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.199-212
    • /
    • 2021
  • The Sebyeonggwan Hall (National Treasure No. 305) is located on the Naval Headquarter of Three Provinces in Tongyeong, and it has partly undergone with several rebuilding, remodeling, repairing and restorations since it's the first establishment in Joseon Dynasty (AD 1605) of ancient Korea. This study focuses on 50 foundation stones that comprise the Sebyeonggwan. These stones are made of six rock types and currently have various shapes of the surface damages. As the foundation stones, the dominant rock type was dacitic lapilli tuffs, and provenance-based interpretation was performed to supply alternative stones for conservation. Most of the provenance rocks for foundation stones showed highly homogeneity with their corresponding stones of petrography, mineralogy and magnetic susceptibility. According to surface deterioration assessments, the most serious damages of the stones were blistering and scaling. The deterioration mechanism was identified through the analysis of inorganic contaminants, and the primary reason is considered salt weathering caused by sea breeze and other combined circumstances. Based on the mechanical durability of the stones, there was no foundation stone that required the replacement of its members attributed to the degradation of the rock properties, but conservation treatment is considered necessary to delay superficial damage. The foundation stones are characterized by a combined outcome of multiple petrological factors that caused physical damage to surfaces and internal defects. Therefore, it's required to diagnosis and monitoring the Sebyeonggwan regularly for long-term preservation.

Non-Destructive Material Analysis and Comparative Study of the Changdeok Palace "Chugudae" and National Designated "Chugudae" (창덕궁 이문원 측우대의 비파괴 재질 분석과 국가지정 측우대와의 비교)

  • Ahn, Yubin;Yoo, Jihyun;Lee, Myeongseong
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.3
    • /
    • pp.244-257
    • /
    • 2020
  • State-designated rain gauge pedestals, including a rain gauge support, were installed in front of the "Imunwon" at Changdeok Palace, made from various rock types. Some of those pedestals provide exact information on their production dates. These rain gauge pedestals are highly valuable as scientific instruments; however, there has been insufficient scientific research carried out on them. Therefore, precise analysis and conservative consideration are required. As a result of petrographic character analysis, the Changdeokgung rain gauge pedestal has been classified as marble. Furthermore, comparison of the results of P-XRF analysis with GSJ reference samples (JLs-1, JDo-1) has determined it to be dolomitic marble. Applying the same analysis to other state-designated rain gauge pedestals, it was presumed that the rain gauge supports at Gyeongsand-do Provincial Office and Gwansanggam were each made from aplite, pinkish medium-to-coarse biotite granite. Results confirmed that only the Changdeokgung rain gauge pedestal was made from marble. Marble is viewed as having an identity specificity rooted in a certain historical background. According to the tendency towards stone figures being made from marble, especially dolomitic marble, it is necessary to further studies whether particular rocks were used to make royal stone figures in Joseon Dynasty.