• Title/Summary/Keyword: Nondestructive Reliability Evaluation

Search Result 83, Processing Time 0.027 seconds

Nondestructive testing for the evaluation of adhesive layer in rocket motor case assembly (연소관 조립체 접합계면의 평가를 위한 비파괴시험에 관한 연구)

  • 박준수;송성진;김영환;임수용;윤남균;조정표
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.90-93
    • /
    • 2001
  • In the present work, ultrasonic testing method has been developed to evaluate adhesive layers in rocket motor case assembly for the reliability of the rocket. The main objective of the present work was to find debonding between steel and rubber layers. The relationship between adhesion ratio and reflected ultrasonic amplitude was calculated by considering reflection coefficient at the interface between steel and rubber layers. It was found that the higher amplitude of ultrasound is reflected for the debonding area, and shown good agreements with experimental results. The ultrasonic C-scan images offers good implements for the determination of debonding area. The nondestructive testing results were compared with the micrography of destruective testing. As results, ultrasonic testing could be utilized for the evaluation of adhesive layer in the rocket motor case assembly.

  • PDF

Evaluation of Reliability of Large Hybrid Curvic Gear Using Thermography (서모그래피 기법을 적용한 하이브리드 대형 커빅기어 신뢰성 평가)

  • Lee, Gyung-Il;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.146-152
    • /
    • 2017
  • Stabilizing the operation of dual fuel diesel engines is very important. The shipbuilding industry is rapidly growing, but gear components requiring reliability are still imported from other countries. The reasoning for this is three-fold. Firstly, it is compulsory that all ships must use devices that meet the performance standards specified in the Safety of Life at Sea (SOLAS) and the convention of MARine POLlution (MAPOL) to prevent pollution caused by ships. Secondly, most ships must comply with the ship classifications specified by ship owners. Therefore, it is specified that key engine gear components must be inspected and authorized for the quality and performance specified by the Ship Register Authority. Thirdly, it is essential that devices (engine gear) for human safety in ships comply with quality standards specified in the regulations and rules by the government. The Ship Register Authority's strict quality standards and approval requirements contribute to the reduction of motivation towards new investment and technology development by device component manufacturers. Therefore, this study aims to develop a method for using infrared thermography to examine gear reliability in order to ensure gear component reliability and national competitiveness in the global market.

Application of Continuous Indentation Technique for Reliability Evaluation in Power Plant Facilities (발전설비 주요배관 신뢰도 확보를 위한 연속압입시험 적용)

  • Park, Sang-Ki;Ahn, Yeon-Shik;Jung, Gye-Jo;Cho, Yong-Sang;Choi, Yeol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.158-162
    • /
    • 2004
  • Reliability of welded structures in power plant facilities is very important, and their reliability evaluation requires exact materials properties. But, the conventional PQR (Procedure Qualification Record) can hardly reflect the real material properties in the field because the test is only done on specimens with simulated welding. Therefore, a continuous indentation technique is proposed in this study for simple and non-destructive testing of in-field structures. This test measures the indentation load-depth curve during indentation and analyzes the mechanical properties such as the yield strength, tensile strength and work hardening index. This technique has been applied to evaluate the tensile properties of the weldment in the main steam pipe and hot reheater pipe in power plants under construction and in operation.

A Study on the High Frequency Ultrasonic Attenuation Characterization in Artificially Aging Degraded 2.25Cr-1Mo Steel (2.25Cr-1Mo 강 인공 열화재의 고주파수 초음파 감쇠특성에 관한 연구)

  • Park, Ik-Keun;Park, Un-Su;Kim, Chung-Seok;Kim, Hyun-Mook;Kwun, Sook-In;Byeon, Jai-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.439-445
    • /
    • 2001
  • The destructive method is reliable and widely used lot the estimation of material degradation but, it have time-consuming and a great difficulty in preparing specimens from in-service industrial facilities. Therefore, the estimation of degraded structural materials used at high temperature by nondestructive evaluation such as electric resistance method, replica method, Barkhausen noise method, electro-chemical method and ultrasonic method are strongly desired. Ultrasonic nondestructive evaluation technique has been reported good to attain efficiency of measurement, high sensitivity of measurement, and rapidity and reliability of result interpretation. In this study, it was verified experimentally the feasibility of the evaluation of degraded 2.25Cr-1Mo steel specimens which were prepared by the isothermal aging heat treatment at $630^{\circ}C$ by high frequency longitudinal wave method investigating the change of attenuation coefficient by FFT analysis and wavelet transform. Because of carbide precipitation increase and spheroidization near grain boundary of microstructure to aging degradation, attenuation coefficient had a tendency to increase as degradation proceeded. It was identified possibly to evaluate degradation using the characteristics of high-frequency ultrasonics. Frequency dependence of ultrasonic attenuation coefficient to aging degradation appeared large, which made sure that attenuation coefficient is an important parameter for evaluation of aging degradation.

  • PDF

Reliability Evaluation of a Motor Core Applied Ultrasound Infrared Thermography Technique (초음파 적외선열화상 기법을 적용한 모터 코어의 신뢰성 평가)

  • Jung, Yoon-Soo;Roh, Chi-Sung;Lee, Gyung-Il;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.60-66
    • /
    • 2016
  • This study used an ultrasound infrared thermography technique to detect issues in the motor core of typical power equipment. The current defect inspection method of the motor core is often incomplete (due to the limits of visual inspection) and thus the reliability of the motor core is reduced. Therefore, in this study, experiments were carried out to increase the reliability of the test by using an ultrasonic infrared thermal non-destructive inspection method to image the motor core. The ambient temperature of the experimental system was maintained at $25^{\circ}C$. Experiments were carried out to examine a damaged motor core and a defect-free motor core. Experimental results confirm the technique clearly detected defects in the motor core, thereby confirming the possibility of using this technique in the field.

REAL-TIME QUALITY EVALUATION OF FRICTION WELDING OF MACHINE COMPONENTS BY ACOUSTIC EMISSION (음향방출법(AE)에 의한 기계요소재의 마찰용접 품질 실시간 평가)

  • SAE-KYOO OH
    • Proceedings of the KWS Conference
    • /
    • 1995.10a
    • /
    • pp.3-20
    • /
    • 1995
  • Development of Real-Time Quality Evaluation of Friction Welding by Acousitc Emission : Report 1 ABSTRACT : According as the friction welding has been increasingly applied in manufacturing various machine components because of its significant economic and technical advantages, one of the important concerns is the reliable quality monitoring method for a good weld quality with both joint strength and toughness in the process of its production. However no reliable nondestructive test method is available at present to determine the weld quality particularly in process of production. So this paper presents an experimental examination and quantitative analysis for the real-time evaluation of friction weld quality by acoustic emission, as a new approach which attempts finally to develop an on-line quality monitoring system design for friction welds using AE techniques. As one of the important results, it was confirmed, through this study, that AE techniques can be reliably applied to evaluating the friction weld qualify with 100% joint strength, as the cumulative AE counts occurring during welding period were quantitatively correlated with reliability at 95% confidence level to the joint strength of welds. Real-Time Evaluation of Automatic Production Quality Control for Friction Welding Machine : Report 2 Abstract : Both in-process quality control and high reliability of the weld is one of the major concerns in applying friction welding to the economical and qualified mass-production. No reliable nondestructive monitoring method is available at present to determine the real-time evaluation of automatic production quality control for friction welding machine. This paper, so that, presents the experimental examinations and statistical quantitative analysis of the correlation between the initial cumulative counts of acoustic emission(AE) occurring during plastic deformation period of the welding and the tensile strength of the welded joints as well as the various welding variables, as a new approach which attempts finally to develop an on-line (or real-time) quality monitoring system and a program for the process of real-time friction welding quality evaluation by initial AE cumulative counts. As one of the important results, it was well confirmed that the initial AE cumulative counts were quantitatively and cubically correlated with reliability of 95% confidence level to the joint strength of the welds, bar-to-bar (SCM4 to SUM31, SCM4 to SUM24L) and that an AE technique using initial AE counts can be reliably applied to real-time strength evaluation of the welded joints, and that such a program of the system was well developed resulting in practical possibility of real-time quality control more than 100% joint efficiency showing good weld with no micro-structural defects.

  • PDF

Reliability Evaluation of Semiconductor using Ultrasound (초음파를 이용한 반도체의 신뢰성 평가)

  • Jang, Hyo-Seong;Ha, Job;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.6
    • /
    • pp.598-606
    • /
    • 2001
  • Recently, semiconductor packages trend to be thinner, which makes difficult to detect defects therein. A preconditioning test is generally performed to evaluate the reliability of semiconductor packages. The test procedure includes two scanning acoustic microscope (SAM) tests at the beginning and end of the entire test, in order to help detect physical defects such as delaminations and package cracks. In particular, of primary concern are package cracks and delaminations caused by moisture absorbed under ambient conditions. This paper discusses the failure mechanism associated with the moisture absorbed and encapsulated in semiconductors, and the use SAM to detect failures such as tracks and delaminations grown during the preconditioning test.

  • PDF

An Interaction Effect of Eddy Current Signals Due to the Neighboring Signal Sources (근접한 두 신호원에 의한 와전류 신호의 간섭 효과)

  • Cheong, Y.M.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.11 no.1
    • /
    • pp.7-12
    • /
    • 1991
  • The multi-frequency eddy current technique has been used for evaluation of various type of defects in tubings. However, this technique is not sufficient to detect and evaluate the defect in tubings if the defect is located in the geometrically complicated area(e. g. tube support plate, anti-vibration bar, tubesheet area) and mixing residue signal is significant to the defect signal. In order to improve the reliability of the multi-frequency eddy current technique, the effect of the interaction of mixing residue after frequency mixing with a function of distances between the defect and the tube support plate boundary has been analyzed theoretically. The experimental results have been discussed with the theoretical developments. The calculation shows the interaction between the two neighboring signal sources could be significant within the range of approximately 1.0mm with the experimental condition.

  • PDF

Experience in Ultrasonic Flaw Estimation and its Excavation on the Weldments of Nuclear Pressure Vessels (원전 압력용기 용접부 초음파탐상, 결함크기 평가 및 결함 수리 경험)

  • Lee, J.P.;Park, D.Y.;Lim, H.T.;Kim, B.C.;Joo, Y.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.11 no.1
    • /
    • pp.52-60
    • /
    • 1991
  • The importance and role of preservice and inservice inspection(PSI/ISI) for nuclear power plant components are intimately related to plant design, safety, reliability and operation etc.. The Korea Atomic Energy Research Institute(KAERI) has been performing PSI/ISI in Korea since the PSI of Kori nuclear power plant, unit 1 had been performed in 1977. KAERI has localized PSI/ISI technology and has done much experience in ultrasonic flaw detection, evaluation and its excavation on the weldments of large pressure vessels. The results of flaw estimation using ultrasonic examination are compared with the actual flaw sizes revealed by field excavation. KAERI's experience regarding PSI/ISI was described and some discussions were added.

  • PDF

Leak Evaluation for Power Plant Valve Using Multi-Measuring Method

  • Lee, Sang-Guk;Park, Jong-Hyuck;Kim, Young-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.469-476
    • /
    • 2008
  • Condition based maintenance(CBM) for the preventive diagnosis of important equipments related to safety or accident in power plant is essential by using the suitable methods based on actual power plant conditions. To improve the reliability and accuracy of the measured value at the minute leak situation, and also to monitor continuously internal leak condition of power plant valve, the development of a diagnosis and monitoring technique using multi-measuring method should be performed urgently. This study was conducted to estimate the feasibility of multi-measuring method using three different methods such as acoustic emission(AE) method, thermal image measurement and temperature difference$({\Delta}T)$ measurement that are applicable to internal leak diagnosis for the power plant valve. From the experimental results, it was suggested that the multi-measuring method could be an effective way to precisely diagnose and evaluate internal leak situation of valve.