• Title/Summary/Keyword: Nondestructive Inspecting

Search Result 31, Processing Time 0.024 seconds

Energy Based Source Location by Using Acoustic Emission for Damage Detection in Steel and Composite CNG Tank (금속 및 복합재 CNG 탱크에서의 손상 검출을 위한 음향방출 에너지 기반 위치표정 기술)

  • Kim, Il-Sik;Han, Byeong-Hee;Park, Choon-Su;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.332-340
    • /
    • 2015
  • Acoustic emission (AE) is an effective nondestructive test that uses transient elastic wave generated by the rapid release of energy within a material to detect any further growth or expansion of existing defects. Over the past decades, because of environmental issues, the use of compressed natural gas (CNG) as an alternative fuel for vehicles is increasing because of environmental issues. For this reason, the importance and necessity of detecting defects on a CNG fuel tank has also come to the fore. The conventional AE method used for source location is highly affected by the wave speed on the structure, and this creates problems in inspecting a composite CNG fuel tank. Because the speed and dispersion characteristics of the wave are different according to direction of structure and laminated layers. In this study, both the conventional AE method and the energy based contour map method were used for source location. This new method based on pre-acquired D/B was used for overcoming the limitation of damage localization in a composite CNG fuel tank specimen which consists of a steel liner cylinder overwrapped by GFRP. From the experimental results, it is observed that the damage localization is determined with a small error at all tested points by using the energy based contour map method, while there were a number of mis-locations or large errors at many tested points by using the conventional AE method. Therefore, the energy based contour map method used in this work is more suitable technology for inspecting composite structures.

Thermal Imaging for Detection of SM45C Subsurface Defects Using Active Infrared Thermography Techniques (능동 적외선 열화상 기법에 의한 SM45C 이면결함 검출 열영상에 관한 연구)

  • Chung, Yoonjae;Ranjit, Shrestha;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.3
    • /
    • pp.193-199
    • /
    • 2015
  • Active thermography techniques have the capability of inspecting a broad range simultaneously. By evaluating the phase difference between the defected area and the healthy area, the technique indicates the qualitative location and size of the defect. Previously, the development of the defect detection method used a variety of materials and the test specimen was done. In this study, the proposed technique of lock-in is verified with artificial specimens that have different size and depth of subsurface defects. Finally, the defect detection capability was evaluated using comparisons of the phase image and the amplitude image according to the size and depth of defects.

Active Infrared Thermography for Visualizing Subsurface Micro Voids in an Epoxy Molding Compound

  • Yang, Jinyeol;Hwang, Soonkyu;Choi, Jaemook;Sohn, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.2
    • /
    • pp.106-114
    • /
    • 2017
  • This paper presents an automated subsurface micro void detection technique based on pulsed infrared thermography for inspecting epoxy molding compounds (EMC) used in electronic device packaging. Subsurface micro voids are first detected and visualized by extracting a lock-in amplitude image from raw thermal images. Binary imaging follows to achieve better visualization of subsurface micro voids. A median filter is then applied for removing sparse noise components. The performance of the proposed technique is tested using 36 EMC samples, which have subsurface (below $150{\mu}m{\sim}300{\mu}m$ from the inspection surface) micro voids ($150{\mu}m{\sim}300{\mu}m$ in diameter). The experimental results show that the subsurface micro voids can be successfully detected without causing any damage to the EMC samples, making it suitable for automated online inspection.

Debonding monitoring of CFRP strengthened RC beams using active sensing and infrared imaging

  • Sohn, Hoon;Kim, Seung Dae;In, Chi Won;Cronin, Kelly E.;Harries, Kent
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.391-406
    • /
    • 2008
  • This study attempts to develop a real-time debonding monitoring system for carbon fiber-reinforced polymer (CFRP) strengthened structures by continuously inspecting the bonding condition between the CFRP layer and the host structure. The uniqueness of this study is in developing a new concept and theoretical framework of nondestructive testing (NDT), in which debonding is detected without relying on previously-obtained baseline data. The proposed reference-free damage diagnosis is achieved based on the concept of time reversal acoustics (TRA). In TRA, an input signal at an excitation point can be reconstructed if the response signal measured at another point is reemitted to the original excitation point after being reversed in the time domain. Examining the deviation of the reconstructed signal from the known initial input signal allows instantaneous identification of damage without requiring a baseline signal representing the undamaged state for comparison. The concept of TRA has been extended to guided wave propagations within the CFRP-strengthened reinforced concrete (RC) beams to improve the detectibility of local debonding. Monotonic and fatigue load tests of large-scale CFRP-strengthened RC beams are conducted to demonstrate the potential of the proposed reference-free debonding monitoring system. Comparisons with an electro-mechanical impedance method and an inferred imaging technique are provided as well.

Ultrasonic Inspection of Cracks in Stud Bolts of Reactor Vessels in Nuclear Power Plants by Signal Processing of Differential Operation

  • Choi, Sang-Woo;Lee, Joon-Hyun;Oh, Won-Deok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.6
    • /
    • pp.439-445
    • /
    • 2005
  • The stud bolt is one of crucial parts for safe operation of reactor vessels in nuclear power plants, Crack initiation and propagation were reported in stud bolts that arc used for closure of reactor vessel and head, Stud bolts are inspected by ultrasonic technique during overhaul periodically for the prevention of stud bolt failure which could induce radioactive leakage from nuclear reactor, In conventional ultrasonic testing for inspection of stud bolts, cracks are detected by using shadow effect It takes too much time to inspect stud bolts by using conventional ultrasonic technique. In addition, there were numerous spurious signals reflected from every oblique surfaces of thread, In this study, the signal processing technique for enhancing conventional ultrasonic technique was introduced for inspecting stud bolts. The signal processing technique provides removing spurious signal reflected from every oblique surfaces of thread and enhances detectability of defects. Detectability for small crack was enhanced by using this signal processing in ultrasonic inspection of stud bolts in Nuclear Power Plants.

Application of Guided Ultrasonic Wave Technology for Evaluation of Welding Part in Cooling Water Pipe (냉각수 배관 용접부 평가를 위한 유도초음파 기술의 적용)

  • Gil, D.S.;Ahn, Y.S.;Park, S.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.36-40
    • /
    • 2010
  • The ultrasonic guided wave propagates along with the given structure's wall direction. Because of this specific character, the ultrasonic guided waves arc used in many other fields. Especially, it can be readily utilized for nondestructive inspection of various structures that are made up of gas pipes, heat exchanger tubes, and thin plates. Further, the guided wave technology can be readily utilized when inspecting pipes or thin plates which pose high risk of the accident but for which the nondestructive inspection itself is impossible because it is difficult to get to them since they are coated or buried underground. In the other hand, conventional ultrasonic testing such as thickness gauging uses bulk waves and only tests the region of structure immediately below the transducer. As a result of the application about inlet and outlet cooling water line using guided wave test, we conformed that the overall corrosions were in the lower side of the 304.8 mm inlet valve and these corrosions were engaged in not locally but through the lower side of the valve line. In the near future, we can expect that the detectable defect size is smaller than before along with the development of the sensing technology.

Simulations for Internal Defect Inspection Using Laser Generated Ultrasonic Wave in Ablation Regime (어블레이션 영역 레이저 초음파의 시뮬레이션과 내부결함 검사)

  • Kim, Jin-Gyum;Choi, Sungho;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.226-232
    • /
    • 2014
  • In the present study, the characteristics of laser ultrasound in the ablation regime are investigated using simulations and experiments. The laser ultrasonic technique has been recognized as a noncontact method in the field of nondestructive tests (NDTs). In hostile environments (such as hot temperatures), this method has various advantages over the conventional contact ultrasonic method. In particular, in the ablation regime, the laser ultrasonic technique is suitable for inspecting internal defects because of the high amplitude and directivity of the longitudinal wave. In this paper, a simulation model for laser ultrasound in the ablation regime was developed. This model was subsequently applied to a defective specimen using the B-scan method to locate defects. Finally, we performed an experimental test to verify the simulation results. Consequently, the simulation demonstrated good agreement with the experimental test.

Inspection of Cracks on the Express Train Wheel Using a High Speed Scan Type Magnetic Camera (초고속 스캔형 자기카메라에 의한 고속열차 차륜 탐상)

  • Lee, Jin-Yi;Hwang, Ji-Seong;Kwon, Seok-Jin;Seo, Jung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.943-950
    • /
    • 2008
  • A novel nondestructive testing (NDT) system, which is able to detect a crack with high speed and high spatial resolution, is urgently required for inspecting small cracks on express train wheels. This paper proposes a high speed scan type magnetic camera, which uses the multiple amplifying circuits and the crack indicating pulse output system. The linearly integrated Hall sensors are arrayed in parallel, and the Hall voltages from each sensor in the scanning direction are obtained and amplified. High-speed NDT can be achieved by using the exclusive analog-digital converter and micro-processor because the ${\partial}\;V_H/\;{\partial}$ x value, which provides the most important crack information, can be obtained by buffering and calculating. The effectiveness of the novel method was verified by examine using cracks on the wheel specimen model.

A Development of Advanced Monitoring System for Resistance Spot Welding Machine using Neural Networks (신경회로망을 이용한 스폿용접의 개선된 감시 시스템의 개발)

  • Hong, Su-Dong;Kim, Sang-Hee;Eem, Jae-Kwon;Choi, Han-Go
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.406-408
    • /
    • 1997
  • This paper presents the new method of a nondestructive spot welding state inspection system using neural networks. The learning process of neural networks makes the inspection system to adapt the variable welding parameters. The inspecting process is working with on-line real-time after off-line learning process. This neural network based inspection system shows reliable results through the field test for variations of applied voltages, currents, and contact area of the welding electrode.

  • PDF

Improvement of Signal Processing Circuit for Inspecting Cracks on the Express Train Wheel (고속 신호처리 회로에 의한 고속철도 차륜검사)

  • Hwang, Ji-Seong;Lee, Jin-Yi;Kwon, Suk-Jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.579-584
    • /
    • 2008
  • A novel nondestructive testing (NDT) system, which is able to detect a crack with high speed and high spatial resolution, is urgently required for inspecting small cracks on express train wheels. This paper proposes an improved signal processing circuits, which uses the multiple amplifying circuits and the crack indicating pulse output system of the previous scan-type magnetic camera. Hall sensors are arrayed linearly, and the wheel is rotated with static speed in the vertical direction to sensor array direction. Each Hall voltages are amplified, converted and immediately operated by using, amplifying circuits, analog-to-digital converters and $\mu$-processor, respectively. The operated results, ${\partial}V_H/{\partial}t$, are compared with a standard value, which indicates a crack existence. If the ${\partial}V_H/{\partial}t$ is larger than standard value, the pulse signal is output, and indicates the existence of crack. The effectiveness of the novel method was verified by examine using cracks on the wheel specimen model.

  • PDF