• 제목/요약/키워드: Noncontact Detection

검색결과 32건 처리시간 0.02초

Rail Inspection Using Noncontact Laser Ultrasonics

  • Kim, Nak-Hyeon;Sohn, Hoon;Han, Soon-Woo
    • 비파괴검사학회지
    • /
    • 제32권6호
    • /
    • pp.696-702
    • /
    • 2012
  • In this study, a noncontact laser ultrasonic system is proposed for rail defect detection. An Nd-Yag pulse laser is used for generation of ultrasonic waves, and the corresponding ultrasonic responses are measured by a laser Doppler vibrometer. For the detection of rail surface damages, the shape of the excitation laser beam is transformed into a line. On the other hand, a point source laser beam is used for the inspection of defects inside a rail head. Then, the interactions of propagating ultrasonic waves with defects are examined using actual rail specimens. Amplitude attenuation was mainly observed for a surface crack, and reflections were most noticeable from an internal damage. Finally, opportunities and challenges associated with real-time rail inspection from a high-speed train are discussed.

자기스케일을 이용한 비접촉식 변위센서 (Noncontact displacement sensors using magnetic scale)

  • 이성필;서영진
    • 센서학회지
    • /
    • 제18권3호
    • /
    • pp.197-201
    • /
    • 2009
  • This paper studies on the noncontact displacement sensor system to detect the displacement of the cylinder rod. For an inexpensive and a simple process, magnetic scales are printed on the cylinder rod, and magnetized by the specially designed magnetizer that has an yoke through the alternation of N and S pole. Noncontact displacement sensor system consists of cylinder with magnetic scales, Hall sensor, linear guide, controller and display. The system can detect the displacement of moving cylinder with 5 cm/sec in the case of 1 mm magnetic scale. It shows a possibility of position detection of hydraulic cylinder and air cylinder.

비접촉 Lamb-EMAT를 이용한 두께감육 평가에 관한 연구 (Non-contact Ultrasonic Technique for the Thin Defect Evaluation by the Lamb-EMAT)

  • 김태형;박익근;이철구;김용권;김현묵;조용상
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.194-196
    • /
    • 2005
  • Ultrasonic guided waves are gaining increasing attention for the inspection of platelike and rodlike structures. At the same time, inspection methods that do not require contact with the test piece are being developed for advanced applications. This paper capitalizes on recent advances in the areas of guided wave ultrasonics and noncontact ultrasonics to demonstrate a superior method for the nondestructive detection of thinning defects simulating hidden corrosion in thin aluminum plates. The proposed approach uses EMAT(electro-magnetic acoustic transducer) for the noncontact generation and detection of guided plate waves. Interesting features in the dispersive behavior of selected guided modes are used for the detection of plate thinning. It is shown that mode cutoff measurements provide a qualitative detection of thinning defects. Measurement of the mode group velocity can be also used to quantify of thinning depth.

  • PDF

Local damage detection of a fan blade under ambient excitation by three-dimensional digital image correlation

  • Hu, Yujia;Sun, Xi;Zhu, Weidong;Li, Haolin
    • Smart Structures and Systems
    • /
    • 제24권5호
    • /
    • pp.597-606
    • /
    • 2019
  • Damage detection based on dynamic characteristics of a structure is one of important roles in structural damage identification. It is difficult to detect local structural damage using traditional dynamic experimental methods due to a limited number of sensors used in an experiment. In this work, a non-contact test stand of fan blades is established, and a full-field noncontact test method, combined with three-dimensional digital image correlation, Bayesian operational modal analysis, and damage indices, is used to detect local damage of a fan blade under ambient excitation without use of baseline information before structural damage. The methodology is applied to detect invisible local damage on the fan blade. Such a method has a seemingly high potential as an alternative to detect local damage of blades with complex high-precision surfaces under extreme working conditions because it is a noncontact test method and can be used under ambient excitation without human participation.

Noncontact Fatigue Crack Evaluation Using Thermoelastic Images

  • Kim, Ji-Min;An, Yun-Kyu;Sohn, Hoon
    • 비파괴검사학회지
    • /
    • 제32권6호
    • /
    • pp.686-695
    • /
    • 2012
  • This paper proposes a noncontact thermography technique for fatigue crack evaluation under a cyclic tensile loading. The proposed technique identifies and localizes an invisible fatigue crack without scanning, thus making it possible to instantaneously evaluate an incipient fatigue crack. Based on a thermoelastic theory, a new fatigue crack evaluation algorithm is proposed for the fatigue crack-tip localization. The performance of the proposed algorithm is experimentally validated. To achieve this, the cyclic tensile loading is applied to a dog-bone shape aluminum specimen using a universal testing machine, and the corresponding thermal responses induced by thermoelastic effects are captured by an infrared camera. The test results confirm that the fatigue crack is well identified and localized by comparing with its microscopic images.

재료의 미세결함 검출을 위한 레이저 공명 초음파 분광(Laser-RUS)시스템 개발 (Development of Laser-Based Resonant Ultrasound Spectroscopy(Laser-RUS) System for the Detection of Micro Crack in Materials)

  • 강영준;김진수;박승규;백성훈;최낙정
    • 한국정밀공학회지
    • /
    • 제27권1호
    • /
    • pp.41-48
    • /
    • 2010
  • Non-contacting, laser-based resonant ultrasound spectroscopy (L-RUS) was applied to characterize the microstructure of a material. L-RUS is widely used by virtue of its many features. Firstly, L-RUS can be used to measure mechanical damping which related to the microstructural variations (grain boundary, grain size, precipitation, defects, dislocations etc). Secondly, L-RUS technology can be applied to various areas, such as the noncontact and nondestructive quality test for precision components as well as noncontact and nondestructive materials characterization. In addition, L-RUS technology can measure the whole field resonant frequency at once. In this paper, we evaluated material characteristics such as resonant frequency, nonlinear propagation characteristic through the development of Laser-Based Resonant Ultrasound spectroscopy (Laser-RUS) System for the detection of Micro Crack in Materials.

레이저빔을 이용한 표면거칠기 및 파상도의 in-process 검출 (In-process Detection of Surface Roughness and Waviness Using Laser Beam)

  • 김희남
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 추계학술대회 논문집
    • /
    • pp.254-259
    • /
    • 1997
  • The measurement of surface roughness and waviness by means of noncontact method is an important area to be developed for GAC(Geometrical Adaptive Control) system. This paper deal with the design of noncontact in-process measurement system which measures the surface roughness and waviness during cylindrical grinding. This measuring system is simple and the apparatus proposed is composed of a laser unit, photodetector and optical system. During operation, the surface of a workpiece is continuously scanned by a laser beam. This method makes it possible to detect the surface roughness and waviness along the feed direction by control the spot diameter of laser beam. The experimental results show that the presence of chattering, loading and glazing can be detected sensitively along the feed directions.

  • PDF

비접촉 방법에 의한 표면탄성파의 검출 (A Study on the Detection of Surface Acoustic Waves by Noncontact Method)

  • 유일현;윤정심;김동일
    • 비파괴검사학회지
    • /
    • 제10권2호
    • /
    • pp.56-62
    • /
    • 1990
  • Surface Acoustic Waves(SAW) are generated on silicon wafer and $YZ-LiTaO_3$ substrate and are detected by noncontact method. As wave sources two kinds of transducers are used : the wedge-type of 20.0 MHz and fabricated Interdigital Transducer(IDT) of 20.8 MHz. SAW are modulated by the optical chopper frequency and are syncronized with a laser beam. In signal processing, intensity variations of light due to the intensity of SAW are analyzed using lock- in amplifier. From the results, corresponding to the applied input power, the intensity variations of a deflected light by corrugations on the substrates are increased and saturation phenomenon is observed.

  • PDF

박판의 두께감육 평가를 위한 비접촉 유도초음파 검사 기법 (Non-contact Ultrasonic Technique for the Evaluation Wall Thinning of the Plate)

  • 박익근;김현묵;김태형;김용권;조용상;송원준
    • 비파괴검사학회지
    • /
    • 제25권4호
    • /
    • pp.287-293
    • /
    • 2005
  • 유도초음파는 박판이나 봉재와 같은 구조를 효율적으로 검사할 수 있는 초음파로 주목받고 있으며, 더불어 시험체를 비접촉으로 검사할 수 있는 기법이 개발되면서 다양한 분야에 응용하기 위해 연구되고 있다. 본 연구에서는 비접촉식 초음파기법과 유도초음파의 장점을 결합하여 기존의 검사기법에 비해 효율적인 검사기법을 제안하고자 하였으며, 실험적인 검증을 위해 알루미늄 박판에 모의 부식결함을 가공하여 두께감육을 검출하고 평가하였다. 제안된 비접촉식 초음파기법으로는 EMAT을 이용하여 유도초음파를 발생 및 수신하였다. 선택된 유도초음파 모드의 분산거동특성에서 모드 컷-오프는 두께 감육을 검출할 수 있는 정성적인 파라미터이며, 군속도 변화는 두께 감육의 깊이를 정량적으로 평가할 수 있는 파라미터로 나타났다.