• Title/Summary/Keyword: Nonazeotropic Refrigerant Mixture

Search Result 8, Processing Time 0.03 seconds

External Condensation Heat Transfer Coefficients of Refrigerant Mixtures on a Smooth Tube

  • An, Kwang-Yong;Cho, Young-Mok;Seo, Kang-Tae;Jung, Dong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.1-9
    • /
    • 2001
  • In this study, condensation heat transfer coefficients (HTCs) of nonazeotropic refrigerant mixtures of HFC32/HFC 134a and HCFC123 at various compositions were measured on a horizontal smooth tube. All data were taken at the vapor temperature of 39$^{\circ}C$ with a wall subcooling of 3~8K. Test results showed that HTCs of tested mixtures were 11.0~85.0% lowed than the ideal values calculated by the mass fraction weighting of the HTCs of the pure components. Thermal resistance due to the diffusion vapor film was partly responsible for the significant reduction of HTCs with these nonazeotropic mixtures. The measured data were compared against thc predicted ones by Colburn and Drew's film model and a good agreement was observed within a deviation of 15%.

  • PDF

Prediction of Forced Convective Boiling Heat Transfer Coefficient of Pure Refrigerants and Binary Refrigerant Mixtures Inside a Horizontal Tube

  • Kim, Min-Soo;Hong, Eul-Cheong;Shin, Jee-Young;Kyungdoug Min;Ro, Sung-Tack
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.935-944
    • /
    • 2003
  • Forced convective boiling heat transfer coefficients were predicted for an annular flow inside a horizontal tube for pure refrigerants and nonazeotropic binary refrigerant mixtures. The heat transfer coefficients were calculated based on the turbulent temperature profile in liquid film and vapor core considering the composition difference in vapor and liquid phases, and the nonlinearity in mixing rules for the calculation of mixture properties. The heat transfer coefficients of pure refrigerants were estimated within a standard deviation of 14% compared with available experimental data. For nonazeotropic binary refrigerant mixtures, prediction of the heat transfer coefficients was made with a standard deviation of 18%. The heat transfer coefficients of refrigerant mixtures were lower than linearly interpolated values calculated from the heat transfer coefficients of pure refrigerants. This degradation was represented by several factors such as the difference between the liquid and the overall compositions, the conductivity ratio and the viscosity ratio of both components in refrigerant mixtures. The temperature change due to the concentration gradient was a major factor for the heat transfer degradation and the mass flux itself at the interface had a minor effect.

Condensation Heat Transfer Coefficients of Binary Refrigerant Mixtures on a Horizontal Smooth Tube (수평관에서 이원 혼합냉매의 응축 열전달계수)

  • 김경기;서강태;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.12
    • /
    • pp.1049-1056
    • /
    • 2000
  • In this study, condensation heat transfer coefficients(HTCs) of 2 nonazeotropic refrigerant mixtures of HFC32/HFC134a and HFC134a/HCFC123 at various compositions were measured on a horizontal smooth tube. All data were taken at the vapor temperature of 39$^{\circ}C$ with a wall subcooling of 3~8K. Test results showed that HTCs of tested mixtures were 11.0~85.0% lower than the ideal values calculated by the mass fraction weighting of the pure components HTCs. Thermal resistance due to the diffusion vapor film was partly responsible for the significant reduction of HTCs with these nonazeotropic mixtures. The measured data were compared against the predicted ones by Colburn and Drew\`s film model and a good agreement was observed.

  • PDF

Forced Convective Evaporating Heat Transfer of Non-azeotropic Refrigerant Mixtures in a Horizontal Smoothed Tube (수평 평활관내에서 비공비혼합냉매의 강제대류 증발열전달)

  • Park, K.W.;Oh, H.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.225-233
    • /
    • 1995
  • Experiments were performed to investigate the heat transfer characteristics of nonazeotropic mixture R-22+R-114 in a heat pump system. The ranges of parameter, such as heat flux, mass flow rate, and quality were $8,141{\sim}32,564W/m^2$, 24~58kg/h, and 0~1, respectively. The overall compositions of the mixtures were 50 and 100 per-cent of R-22 by weight for R-22+R-114 mixture. The results indicated that there were distinct different heat transfer phenomena between the pure substance and the mixture. In case of pure refrigerant the heat transfer rates for cooling were strongly dependent upon quality of the refrigerant. Overall evaporating heat transfer coefficients for the mixture were somewhat lower than pure R-22 values in the forced convective boiling region. For a given flow rate, the heat transfer coefficient at the circumferential tube wall(top, side, and bottom of the test tube) for R-22/R-114(50/50wt%)mixture, however, was higher than for pure R-22 at side and bottom of the tube. Furthermore, a prediction for the evaporating heat transfer coefficient of the mixtures was developed based on the method of Yoshida et.al.'s. The resulting correlation yielded a good agreement with the data for the refrigerant mixtures.

  • PDF

Pool Boiling Heat Transfer Coefficients of Mixtures Containing Propane, Isobutane and HFC134a on a Plain Tube (수평관에서 프로판, 이소부탄, BFC134a를 포함한 혼합냉매의 풀비등 열전달계수)

  • Park, Ki-Jung;Baek, In-Cheol;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.955-963
    • /
    • 2006
  • Nucleate pool boiling heat transfer coefficients (HTCs) were measured with one nonazeotropic mixture of Propane/Isobutane and two azeotropic mixtures of HFC134a/Isobutane and Propane/HFC134a. All data were taken at the liquid pool temperature of $7^{\circ}C$ on a horizontal plain tube with heat fluxes of $10kW/m^2\;to\;80kW/m^2$ with an interval of $10kW/m^2$ in the decreasing order of heat flux. The measurements were made through electrical heating by a cartridge heater. The nonazeotropic mixture of Propane/Isobutane showed a reduction of HTCs as much as 41% from the ideal values. The azeotropic mixtures of HFC134a/Isobutane and Propane/HFC134a showed a reduction of HTCs as much as 44% from the ideal values at compositions other than azeotropic compositions. At azeotropic compositions, however, the HTCs were even higher than the ideal values due to the increase in the vapor pressure. For all mixtures, the reduction in heat transfer was greater with a larger gliding temperature difference. Stephan and $K{\ddot{o}}rner's$ and Jung et al's correlations predicted the HTCs of mixtures with a mean deviation of 11%. The largest mean deviation occurred at the azeotropic compositions of HFC134a/Isobutane and Propane/HFC134a.

Analysis of Convective Boiling Heat Transfer for Refrigerant Mixtures in Annular Horizontal Flow (혼합냉매의 환상 유동 증발열전달 해석)

  • Sin, Ji-Yeong;Kim, Min-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.720-729
    • /
    • 1996
  • An analysis of convective boiling heat transfer for refrigerant mixtures is performed for an annular flow to investigate the degradation of the heat transfer rate. Annular flow is selected in this study because a great portion of the evaporator in the refrigeration and air conditioning system is known to be in the annular flow regime. Mass transfer effect due to composition difference between liquid and vapor is included in this analysis, which is considered to be one of driving forces for the mass transfer at the interface. Due to the concentration gradient at the interface the mass transfer is interfered, so is the evaporative heat transfer at the interface. The mass transfer resistance makes the interface temperature slightly higher and, as a result, the heat transfer coefficients decrease compared with those without mass transfer effects. The degradatioin of the heat transfer rate reaches its maximum at a certain composition. The composition difference between vapor core and vapor at the interface has a direct effect on the temperature difference between the vapor core and the interface and the degradation of the heat transfer rate. Correction factor $C_{F}$ for the mixture effects is added to the correlation for pure substances and the flow boiling heat transfer coefficients can be calculated using the modified equation.n.

Estimation of Thermodynamic Properties of Refrigerant Mixtures Using a Modified Carnaha-Starling Equation of State (수정된 Carnahan-Starling 상태방정식을 이용한 혼합냉매의 물성계산)

  • 김민수;김동섭;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2189-2205
    • /
    • 1991
  • Thermodynamic properties of binary nonazeotropic refrigerant mixtures are estimated by using a modified Carnhan-Starling equation of state. In this study, pure component refrigerants such as R14, R23, R13, R13 B1, R22, R12, R134a, R152a, R142b, RC318, R114, R11, R123 and R113 are chosen and the thermodynamic properties of enthalpy and entropy are calculated in terms of relevant variables. The modified Carnahan-Starling equation of state is compared with the carnahan-Staring-De Santis equation of sate. Results show that the relative errors become slightly smaller with the equation of state proposed in this study. Correlations are obtained for the mixtures of which the vapor liquid equilibruim data are available to us in the literature. Those mixtures are R14/R23, R23/R12, R13/R12, R13/R11, R13B1/R22, R13B1/RC318, R12/RC138, R12/R114 and R12/R11. The binary interaction coefficients are found under the condition of minimizing the pressure deviations at the vapor liquid equiblibrium state and the estimation of the vapor liquid equilibrium for the refrigerant mixtures is done. Pressure-enthalpy and temperature-entropy diagrams are plotted for the refrigerant mixtures of specific composition.

A Study on the Performance of HCFC22 and Alternative Refrigerants in Heat Pumps (열펌프를 이용한 R22대체 혼합냉매의 성능에 관한 연구)

  • Song, Y.J.;Jung, D.G.
    • Solar Energy
    • /
    • v.18 no.1
    • /
    • pp.69-79
    • /
    • 1998
  • This paper is concerned about the performance of HCFC22 alternative refrigerants used in heat pumps and industrial chillers. A water-to-water breadboard heat pump with counter-current heat exchangers and a hermetic compressor was built to carry out the experiments with various refrigerants. For each test, more than 40 temperatures, 4 pressures, power input, mass flow rates of the heat transfer fluids were measured. Refrigerants tested were HCFC22, R290(Propane), an azeotrope of 45%Propane/55%R134a mixture, and a nonazeotropic mixture of Calor 50. All tests were conducted under ARI test A condition. It is found that the COP and capacity of propane were 18% and 2.5% higher than those of HCFC22 while the COP and capacity of 45%Propane/55%R134a mixture were 3.5% and 5.3% higher than those of HCFC22 respectively. Also the COP and capacity of Calor 50 were 17% and 7.8% higher than those of HCFC22. Compressor discharge temperatures of alternative refrigerants were roughly $35^{\circ}C$ lower than that of HCFC22 indicating that these refrigerants are good from the view point of compressor reliability. The charging amounts for the alternative refrigerants were reduced by 40-60% as compared to that of HCFC22. Overall, it can be said that hydrocarbon containing alternative refrigerants are excellent in thermodynamic performance but should be used with considerable care due to their flammability.

  • PDF