• Title/Summary/Keyword: Nonadiabatic reaction

Search Result 3, Processing Time 0.019 seconds

Wavepacket Correlation Function Approach for Nonadiabatic Reactions: Quasi-Jahn-Teller Model

  • Park, Heesoo;Shin, Changkyun;Shin, Seokmin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1061-1066
    • /
    • 2014
  • Time-dependent formulations of the reactive scattering theory based on the wavepacket correlation functions with the M${\phi}$ller wavepackets for the electronically nonadiabatic reactions are presented. The calculations of state-to-state reactive probabilities for the quasi-Jahn-Teller scattering model system were performed. The conical intersection (CI) effects are investigated by comparing the results of the two-surface nonadiabatic calculations and the single surface adiabatic approximation. It was found that the results of the two-surface nonadiabatic calculations show interesting features in the reaction probability due to the conical intersection. Single surface adiabatic calculations with extended Born-Oppenheimer approximation using simple wavepacket phase factor was found to be able to reproduce the CI effect semi-quantitatively, while the single surface calculations with the usual adiabatic approximation cannot describe the scattering process for the Jahn-Teller model correctly.

Theoretical Analysis on Bifurcation Behavior of Catalytic Surface Reaction on Nonadiabatic Stagnation Plane (비단열 정체면에서 촉매 표면반응의 천이 거동에 대한 이론적 해석)

  • Lee, Su- Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.697-704
    • /
    • 2004
  • Bifurcation behavior of ignition and extinction of catalytic reaction is theoretically investigated in a stagnation-point flow. Considering that reaction takes place only on the catalytic surface, where conductive heat losses are allowed to occur, activation energy asymptotics with a overall one-step Arrhenius-type catalytic reaction is employed. For the cases with and without the limiting reactant consumption, the analysis provides explicit expressions, which indicate the possibility of multiple steady-state solution branches. The difference between the solutions with and without reactant consumption is in the existence of an upper solution branch, and the neglect of reactant consumption is inappropriate for determining extinction conditions. For larger values of reactant consumption, the solution response is all monotone, suggesting that multiple solutions are not possible. It is shown that bifurcation Damkohler numbers increase (decrease) with increasing of conductive heat loss (gain) on the catalytic surface, which means that smaller (larger) values of the strain rate allow the surface reaction to tolerate larger heat losses (gains). Lewis number of the limiting reactant can also significantly affect bifurcation behavior in a similar way to the effect of heat loss.

Numerical Modeling for the $H_2/CO$ Bluff-Body Stabilized Flames

  • Kim, Seong-Ku;Kim, Yong-Mo;Ahn, Kook-Young;Oh, Koon-Sup
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.879-890
    • /
    • 2000
  • This study investigates the nonpremixed $H_2/CO$-air turbulent flames numerically. The turbulent combustion process is represented by a reaction progress variable model coupled with the presumed joint probability function. In the present study, the turbulent combustion model is applied to analyze the nonadiabatic flames by introducing additional variable in the transport equation of enthalpy and the radiative heat loss is calculated using a local, geometry independent model. Calculations are compared with experimental data in terms of temperature, and mass fraction of major species, radical, and NO. Numerical results indicate that the lower and higher fuel-jet velocity flames have the distinctly different flame structures and NO formation characteristics in the proximity of the outer core vortex zone. The present model correctly predicts the essential features of flame structure and the characteristics of NO formation in the bluff-body stabilized flames. The effects of nonequilibrium chemistry and radiative heat loss on the thermal NO formation are discussed in detail.

  • PDF