• Title/Summary/Keyword: Non-uniform

Search Result 2,172, Processing Time 0.03 seconds

BTS Based Improved BER for Stronger Channel User in Non-Uniform Source SSC NOMA

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.78-84
    • /
    • 2022
  • In this paper, to improve further the bit-error rate (BER) performance of the stronger channel user in non-uniform source non-orthogonal multiple access (NOMA) with symmetric superposition coding (SSC), we propose a smart bit-to-symbol (BTS) mapping of SSC. First, the analytical expression for the total allocated power of the proposed BTS mapping scheme is derived, and then we show that the BER of the proposed BTS mapping scheme improves further, compared to that of the existing BTS mapping scheme. Moreover, based on the simulations, the signal-to-noise (SNR) gain of the proposed BTS mapping scheme over the existing BTS mapping scheme is calculated. In result, the proposed BTS mapping could be a candidate scheme for non-uniform source SSC NOMA with the SNR gain.

Perception of Glare Source According to the Luminance Difference on a Window Plane (창면의 상하부 휘도차에 따른 글레어 광원의 인식변화)

  • Kim, Wonwoo;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.7 no.4
    • /
    • pp.17-22
    • /
    • 2007
  • The existing discomfort glare models are based on research that was conducted exclusively with uniform luminance sources. It is impossible to apply the models to windows of non-uniform luminance. For evaluating discomfort glare from windows, the method selecting glare source on a window plane is necessary. This study was carried outto propose a practical method to choose glare source from anon-uniform window plane. In the experiment, the perception of glare source according to the luminance difference is examined using a simulated windowof non-uniform luminance. The surface of the window is divided into two or three parts, and different luminance is setting on each surface. The observers were asked to decide whether the lower part of the window can be perceived as a glare source or not. The result shows that the lower part is perceived as a glare source when the lower part has over 37% of the luminance of the upper part of the window divided into two parts, and when it has over 51% of the luminance of the upper part of the window divided into three parts. the results may be applicable to select the glare source in awindow.

Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions

  • Madani, Hamid;Hosseini, Hadi;Shokravi, Maryam
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.889-913
    • /
    • 2016
  • Vibration analysis of embedded functionally graded (FG)-carbon nanotubes (CNT)-reinforced piezoelectric cylindrical shell subjected to uniform and non-uniform temperature distributions are presented. The structure is subjected to an applied voltage in thickness direction which operates in control of vibration behavior of system. The CNT reinforcement is either uniformly distributed or functionally graded (FG) along the thickness direction indicated with FGV, FGO and FGX. Effective properties of nano-composite structure are estimated through Mixture low. The surrounding elastic foundation is simulated with spring and shear constants. The material properties of shell and elastic medium constants are assumed temperature-dependent. The motion equations are derived using Hamilton's principle applying first order shear deformation theory (FSDT). Based on differential cubature (DC) method, the frequency of nano-composite structure is obtained for different boundary conditions. A detailed parametric study is conducted to elucidate the influences of external applied voltage, elastic medium type, temperature distribution type, boundary conditions, volume percent and distribution type of CNT are shown on the frequency of system. In addition, the mode shapes of shell for the first and second modes are presented for different boundary conditions. Numerical results indicate that applying negative voltage yields to higher frequency. In addition, FGX distribution of CNT is better than other considered cases.

AC Breakdown Characteristics of Pure Ar, $N_2$ Gas and Ar/$N_2$ Gas Mixutres under Uniform and Non-Uniform Fields (평등 및 불평등 전계하에서 순수 Ar, $N_2$가스와 Ar/$N_2$혼합 가스의 교류절연파괴 특성)

  • 이상우;김인식;이동인;이광식;김이국
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.5
    • /
    • pp.20-27
    • /
    • 2001
  • In this paper, the AC breakdown characteristics of pure Ar and $N_2$gas with gas pressure range of 58.8~137.3[kPa] under uniform and non-uniform fields were investigated, and the measured values were compared with those in Ar/$N_2$gas mixtures with pressure varying. Summarizing the experimental results, the breakdown voltages of pure $N_2$gas, under uniform and non-uniform fields, were increased about 4.8 and 1.1 times than those of pure Ar gas, and the AC breakdown voltage increased with the pressure increasing. The breakdown voltages of Ar/$N_2$ gas mixtures were decreased with decreasing the mixture ratio of $N_2$gas. In case of Ar(85%)/$N_2$(15%) and Ar(70%)/$N_2$(30%) gas mixtures comparing to the pure Ar gas, the breakdown voltages under uniform field were increased about 1.5 and 2.1 times, and under non-uniform field were increased about 1.1 and 1.3 times at the pressure of 101.3[kPa]. Also, corona inception voltage of Ar(70%)/$N_2$(30%) gas mixtures under non-uniform field were increased about 1.5 times than those of pure Ar gas.

  • PDF

AC Breakdown Characteristics of $Ar/N_2 and Kr/N_2$Gas Mixtures ($Ar/N_2 및 Kr/N_2$혼합가스의 교류절연파괴 특성)

  • Lee, Sang-Woo;Kim, In-Sik;Lee, Dong-In;Lee, Kwang-Sik;Kim, Lee-Kook
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.12
    • /
    • pp.599-606
    • /
    • 2001
  • In this paper, the ac breakdown characteristics of pure Ar, Kr and $N_2$ gas with gas pressure range of 58.8-137.3[kPa] under uniform and non-uniform fields were investigated, and the measured values were compared with those In Ar/$N_2$ and Kr/$N_2$ gas mixtures with pressure varying. Summarizing the experimental results, the breakdown voltages of Pure $N_2$gas, under uniform and non-uniform fields, were increased about 4.8 and 1.1 times than those of pure Ar gas, and about 4.4 and 1.2 times than those of pure Kr gas, and the ac breakdown voltage increased with the pressure increasing. The breakdown voltages of Ar/$N_2$ gas mixtures were decreased with decreasing the mixture ratio of Pure $N_2$ gas. In case of Ar(85%)/$N_2$ (15%) and Ar(70%)/$N_2$ (30%) gas mixtures comparing to the pure Ar gas, the breakdown voltages under uniform field were increased about 1.8 and 2.2 times, and under non-uniform field were increased about 1.1 and 1.3 times at the pressure of 101.3[kPa]. Also, in case of Kr(85%)/$N_2$ (15%) and Kr(70%)/$N_2$ (30%) gas mixtures comparing to the pure Kr gas, the breakdown voltages under uniform field were increased about 1.7 and 2.0 times, and under non-uniform field were increased about 1.0 and 1.2 times. Corona inception voltage of Kr(70%)/$N_2$(30%) gas mixtures under non-uniform fields were increased about 1.28 times than those of Ar(70%)/$N_2$ (30%) gas mixtures. In case of practical incandescent lamps, luminous and lifetime of Kr(70%)/$N_2$ (30%) gas mixtures were increased about 1.15 and 1.21 times than those of Ar(70%)/$N_2$ (30%) gas mixtures.

  • PDF

Dynamic response of non-uniform Timoshenko beams made of axially FGM subjected to multiple moving point loads

  • Gan, Buntara S.;Trinh, Thanh-Huong;Le, Thi-Ha;Nguyen, Dinh-Kien
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.981-995
    • /
    • 2015
  • This paper presents a finite element procedure for dynamic analysis of non-uniform Timoshenko beams made of axially Functionally Graded Material (FGM) under multiple moving point loads. The material properties are assumed to vary continuously in the longitudinal direction according to a predefined power law equation. A beam element, taking the effects of shear deformation and cross-sectional variation into account, is formulated by using exact polynomials derived from the governing differential equations of a uniform homogenous Timoshenko beam element. The dynamic responses of the beams are computed by using the implicit Newmark method. The numerical results show that the dynamic characteristics of the beams are greatly influenced by the number of moving point loads. The effects of the distance between the loads, material non-homogeneity, section profiles as well as aspect ratio on the dynamic responses of the beams are also investigated in detail and highlighted.

Free vibration analysis of cracked Timoshenko beams carrying spring-mass systems

  • Tan, Guojin;Shan, Jinghui;Wu, Chunli;Wang, Wensheng
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.551-565
    • /
    • 2017
  • In this paper, an analytical approach is proposed for determining vibration characteristics of cracked non-uniform continuous Timoshenko beam carrying an arbitrary number of spring-mass systems. This method is based on the Timoshenko beam theory, transfer matrix method and numerical assembly method to obtain natural frequencies and mode shapes. Firstly, the beam is considered to be divided into several segments by spring-mass systems and support points, and four undetermined coefficients of vibration modal function are contained in each sub-segment. The undetermined coefficient matrices at spring-mass systems and pinned supports are obtained by using equilibrium and continuity conditions. Then, the overall matrix of undetermined coefficients for the whole vibration system is obtained by the numerical assembly technique. The natural frequencies and mode shapes of a cracked non-uniform continuous Timoshenko beam carrying an arbitrary number of spring-mass systems are obtained from the overall matrix combined with half-interval method and Runge-Kutta method. Finally, two numerical examples are used to verify the validity and reliability of this method, and the effects of cracks on the transverse vibration mode shapes and the rotational mode shapes are compared. The influences of the crack location, depth, position of spring-mass system and other parameters on natural frequencies of non-uniform continuous Timoshenko beam are discussed.

Post-buckling of Non-uniform Cantilever Column Subjected to a Combined Load (결합하중을 받는 임의단면 기둥의 좌굴후 해석)

  • Shin, Young-Jae;Chiba, Masakatsu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.5
    • /
    • pp.323-329
    • /
    • 2002
  • This paper presents the application of the technique of differential transformation to the post-buckling problem of non-uniform cantilever column subjected to a combined load. Numerical calculations are carried out and compared with previously published results to validate the results of the present method. The results obtained by this method agree very well with those reported in the previous works. The results obtained by the present method are presented for both various non-uniform columns and loads.

Effects of Non-uniform Pollution on the AC Flashover Performance of Suspension Insulators

  • Zhijin, Zhang;Jiayao, Zhao;Donghong, Wei;Xingliang, Jiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.961-968
    • /
    • 2016
  • The non-uniform distribution of contamination on insulator surface has appreciable effects on flashover voltage, and corresponding researches are valuable for the better selection of outdoor insulation. In this paper, two typical types of porcelain and glass insulators which are widely used in ac lines were taken as the research subjects, and their corrections of AC flashover voltage under non-uniform pollution were studied. Besides, their flashover characteristics under different ratio (T/B) of top to bottom surface salt deposit density (SDD) were investigated, including the analysis of flashover voltage, surface pollution layer conductivity and critical leakage current. Test results gave the modified formulas for predicting flashover voltage of the two samples, which can be directly applied in the transmission line design. Also, the analysis delivered that, the basic reason why the flashover voltage increases with the decrease of T/B, is due to the decrease of equivalent surface conductivity of the whole surface and the decrease of critical leakage current. This research will be of certain value in providing references for outdoor insulation selection, as well as in proposing more information for revealing pollution flashover mechanism.

Evaluation of Radial Direction Non-uniform Strain in Drawn Bar (인발 봉재의 반경방향 불균일 변형률 평가)

  • Lee, S.M.;Lee, I.K.;Lee, S.Y.;Jeong, M.S.;Moon, Y.H.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.29 no.6
    • /
    • pp.356-361
    • /
    • 2020
  • In general, the drawing process is performed in a multi-pass to meet the required shape and cross section. In the drawn material, the surface strain is relatively higher than the center due to the direct contact with the die. Therefore, a non-uniform strain distribution appears in the surface of the material where the strain is concentrated and the center having a relatively low strain, thus it is difficult to predict the strain in the drawn material. In this study, the non-uniform strain distribution was evaluated using a finite element analysis and the non-uniform strain distribution model based on the upper bound method. In addition, the relationship between the hardness and the strain was established through a simple compression test to evaluate the distribution of the strain in the experimentally multi-pass drawn bar.