• Title/Summary/Keyword: Non-thermal Plasma

Search Result 232, Processing Time 0.022 seconds

Decomposition of Odor Pollutant Acetaldehyde Using Mn Loaded Microporous Zeolites (Mn 담지 미세기공 제올라이트를 이용한 악취오염물질인 아세트알데히드의 분해반응)

  • Lee, Hyung Won;Lee, Heejin;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.57-60
    • /
    • 2020
  • An acetaldehyde, a representative food waste odor, was decomposed using a hybrid system comprised of a non-thermal plasma and catalyst at an ambient temperature under high humidity. A five wt.% Mn was impregnated on two differently structured microporous zeolites, namely Beta and ZSM-5, with a different molar ratio of SiO2/Al2O3. Under high humidity conditions, the acetaldehyde degradation was higher in zeolites with the high ratio of SiO2/Al2O3. Among studied catalysts, a five wt.% Mn/Beta (SiO2/Al2O3 = 300) showed the highest acetaldehyde removal activity owing to its high hydrophobicity and reducibility. During long term stability test using the same catalyst for 110 hours, the acetaldehyde removal activity was relatively well-maintained.

NO Oxidation using Non-Thermal Plasma and NOx removal by NaOH-Water Solution Shower (비열플라즈마에 의한 NO의 산화와 NaOH 샤워해 의한 NOx의 제거특성)

  • Park, Jae-Yoon;Koh, Yong-Sul;Kim, Ick-Kewn;Park, Sang-Hyun;Koh, Hee-Seok;Lee, Duck-Chool
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.947-949
    • /
    • 1998
  • In this paper, the NO was oxidized $NO_2$ by using the non-thermal plasma and NOx removal characteristics were measured by showering NaOH water-solution to $NO_2$. The NO oxidation increased in the order of DC, AC, and Pulse. NOx oxidation for two stage with applied voltage was better than that for one stage with applied voltage. NO oxidation didn't depend on applied voltage. While NO oxidation was going on, NOx removal efficiency was 20-25%, however, significantly depended on the injection method of air and $H_2O$ + air. When NaOH water-solution density of 20% was showered to flue gases, NOx removal efficiency increased to 64%.

  • PDF

Chair-side surface treatment method for inducing hydrophilicity in titanium dental implant (치과용 티타늄 임플란트의 골융합 증진을 위한 체어사이드 친수성 표면처리방법)

  • Lee, Jung-Hwan;Jun, Soo-Kyung;Lee, Hae-Hyoung
    • The Journal of the Korean dental association
    • /
    • v.54 no.12
    • /
    • pp.985-995
    • /
    • 2016
  • Titanium (Ti) has been widely used for dental implant due to great biocompatibility and bonding ability against natural alveolar bone. A lot of titanium surface modification has been introduced in dentistry and, among them, methods to introduce micro/nano-roughened surface were considered as clinically approved strategy for accelerating osseointegration of Ti dental implant. To have synergetic effect with topography oriented favors in cell attachment, chair-side surface treatment with reproducibility of micro/nano-topography is introduced as next strategy to further enhance cellular functionalities. Extensive research has been investigated to study the potential of micro/nano-topography preserved chair-side surface treatment for Ti dental implant. This review will discuss ultraviolet, low level of laser therapy and non-thermal atmospheric pressure plasma on Ti dental implant with micro/nano-topography as next generation of surface treatment due to its abilities to induce super-hydrophilicity or biofunctionality without change of topographical cues.

  • PDF

The Study on the Mutual Characteristics Between Transmitting Efficiency of Pulse Energy and Wall Plug Consumed Power of Non-Thermal Plasma (저온 플라즈마의 펄스에너지 전송효율과 Wall Plug 소비전력과의 상호 특성에 관한 연구)

  • Jeong, Jong-Han;Jeong, Hyeon-Ju;Kim, Hwi-Yeong;Jeong, Yong-Ho;Song, Geum-Yeong;Kim, Geun-Yong;Kim, Hui-Je
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.10
    • /
    • pp.506-510
    • /
    • 2002
  • In this paper, we study on the mutual characteristics between transmitting efficiency of pulse energy and wall plug consumed power of non-thermal Plasma for removing environmental pollutive gas of coal plant. To obtain high pulse energy of our system, we used MPC(magnetic pulse compressor) of power switch and tested their characteristics by adjusting electrode length of reactor and charging voltage in capacitor. As a result, we obtained consumed power of wall plug and a compressed pulse of voltage 110kV, rising time 500ns. Impedance of load on increasing electrode length was decreased, but electrical efficiency was increased. These results indicate we can control critical voltage of pulse corona and electrical efficiency of economic cost in power plant.

Oxidation of Soot Particles with O Radicals Generated in a AC Streamer Corona Discharge (AC 스트리머 코로나 방전으로 생성된 O 라디칼과 매연 입자의 산화반응)

  • Kim, Pil-Seung;Lee, Kyo-Seung;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.1
    • /
    • pp.9-16
    • /
    • 2003
  • Carbon soot emission from combustion processes, especially from diesel engines, is a subject of growing concern since soot is known to seriously affect human health. Efforts have been made to oxidize soot particles utilizing Non-Thermal Plasma(NTP) techniques. When oxygen is carried into a plasma device, electrons generated by the plasma dissociate the oxygen, resulting in the formation of oxygen atoms. These highly activated atoms, called O radicals, are known as strong oxidizing agent. This paper presents concentration variations of CO and $CO_2$ at the exit of the plasma device, resulting from the soot oxidation by O radicals, with variations of inlet oxygen concentration, gas temperature, and gas flow rate. Based on the data, Arrehenious rate constants of reactions between C(s)+O and C(s)+O+O were proposed.

  • PDF

Silent Discharge Characteristics of $CO_2$ for Alumina Imbedded-Discharge Reacted (알루미나 반응기에서의 이산화탄소의 무성방전 특성)

  • 조문수;곽동주
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1061-1064
    • /
    • 2001
  • Deep Interests have been paid on the application of non-thermal plasma technique to solve the environmental pollution problems. $CO_2$, is one of the severe pollutants which cause the acid rain and global warming. In this study, in order to improve the conversion efficiency of $CO_2$, the streamer corona discharge plasma and barrier discharge plasma reactors were made, and the conversion characteristics of $CO_2$by the corona discharge plasma and some discharge characteristics of these discharge chambers are studied experimentally.

  • PDF

The Effect of Discharge Chamber Structure on the Barrier Discharge of $CO_2$ (이산화탄소의 무성방전특성에 미치는 방전관의 구조)

  • Park, M.H.;Kwak, D.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.207-211
    • /
    • 2000
  • Deep Interests have been paid on the application of non-thermal plasma technique to solve the environmental pollution problems. $CO_2$ is one of the severe pollutants which cause the acid rain and global warming. In this study, in order to improve the conversion efficiency of $CO_2$, the streamer corona discharge plasma and barrier discharge plasma reactors were made, and the conversion characteristics of $CO_2$ by the corona discharge plasma and some discharge characteristics of these discharge chambers are studied experimentally.

  • PDF

Development of Plasma Assisted Burner for Regeneration of Diesel Particulate Filter (매연여과장치 재생을 위한 플라즈마 응용 버너 개발)

  • Cha, Min-Suk;Lee, Dae-Hoon;Kim, Kwan-Tae;Lee, Jae-Ok;Song, Young-Hoon;Kim, Seock-Joon
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.4
    • /
    • pp.8-13
    • /
    • 2007
  • Plasma assisted combustion is an old subject for the combustion society, but recently, the subject is refocused partly because techniques for non-thermal plasmas are progressed significantly, and partly because there are lots of applications which need to be overcome by a new reaction technology. In the present study, we have developed plasma assisted burner (plasma burner), which can be used as a heating source in a diesel particulate filter system. The burner can burn 20-60 cc/min of diesel fuel with 50 lpm of fresh air in an exhaust pipe of 2.0 liter diesel engine. Using 20 cc/min of diesel fuel, an exhaust temperature for 2.0 liter diesel engine can be raised up to around $600^{\circ}C$ for a wide range of engine speed (idle-3,000 rpm). The characteristics of the plasma burner are reported, and the possible operating mechanism of it will be discussed based on the effects of an electric field and a plasma on flames.

  • PDF

Development of Plasma Assisted Burner for Regeneration of Diesel Particulate Filter (플라즈마를 이용한 매연여과장치 재생용 버너 개발)

  • Cha, Min-Suk;Lee, Dae-Hoon;Kim, Kwan-Tae;Lee, Jae-Ok;Song, Young-Hoon;Kim, Seock-Joon
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.202-206
    • /
    • 2007
  • Plasma assisted combustion is an old subject for the combustion society, but recently, the subject is refocused partly because techniques for non-thermal plasmas are progressed significantly, and partly because there are lots of applications which need to be overcome by a new reaction technology. In the present study, we have developed plasma assisted burner (plasma burner), which can be used as a heating source in a diesel particulate filter system. The burner can bum 20 - 60 cc/min of diesel fuel with 50 lpm of fresh air in an exhaust pipe of 2.0 liter diesel engine. Using 20 cc/min of diesel fuel, an exhaust temperature for 2.0 liter disel engine can be raised up to around $600^{\circ}C$ for the range of engine speeds is idle - 3,000 rpm. The characteristics of the plasma burner are reported, and the possible operating mechanism of it will be discussed based on the effects of an electric field and a plasma on flames.

  • PDF

Removal of Styrene Using Different Types of Non-Thermal Plasma Reactors (저온플라즈마 반응기의 형태에 따른 스타이렌 분해 특성에 관한 연구)

  • Park, Jeong-Uk;Choi, Kum-Chan;Kim, Hyun-Ha;Ogata, Atsushi;Futamura, Shigeru
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.215-223
    • /
    • 2005
  • Non-thermal plasma decomposition of gas-phase styrene was investigated in this study using three different types of plasma reactors; dielectric-barrier discharge (DBD) reactor, surface discharge (SD) reactor and plasma-driven catalyst (PDC) reactor packed with 2.0 wt% $Ag/TiO_2$ catalysts. The main parameters used for the comparative assessment of the plasma reactors include the decomposition efficiency, carbon balance, byproduct distribution, COx ($CO+CO_2$) selectivity and COx yield. The SD and the DBD reactors showed better conversion efficiency of styrene than that of the PDC reactor due to their larger capability in ozone formation. On the other hand, the PDC reactor showed better carbon balance, the yield and the selectivity of COx. The required specific input energies to achieve 100% carbon balance from the decomposition of 100 ppmv styrene using the plasma alone reactors and the PDC reactor were 420 J/L and 110 J/L, respectively. The major decomposition products in gas-phase were CO, $CO_2$ and HCOOH regardless of the types of plasma reactors. In the case of SD and DBD reactors, the $CO_2$ selectivity ranged in $39.5{\sim}60%$. The $CO_2$ selectivity in the PDC reactor was in range of $68.5{\sim}75.5%$.