• Title/Summary/Keyword: Non-staggered grid system

Search Result 37, Processing Time 0.022 seconds

A Study on the Fluid Flow and Heat Transfer Around a Staggered Tube Bundles Using a Low-Reynolds $k-\epsilon$ Turbulence Model (저레이놀즈수 $k-\epsilon$ 난류모델을 사용한 엇갈린 관군 주위에서의 유동 및 열전달에 관한 연구)

  • 김형수;최영기;유홍선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.212-218
    • /
    • 1995
  • Turbulent flow and heat transfer characteristics around staggered tube bundles were studied using a non-orthogonal boundary fitted coordinate system and the low Reynolds .kappa. - .epsilon. turbulence model suggested by Lam and Bremhorst. The predicted flow characteristics for two tube pitches and tube arrangement showed good agreement with the experimental data except the strongly curved region. The predicted Nusselt number was compared with measurements obtained in the staggered rough bundles and it revealed the similar trend to measurements, but the location of the maximum and minimum heat transfer differed somewhat from the measurements.

A Finite Volume Method for Computations of Two-Dimensional Laminar Flows (이차원 층류유동 해석을 위한 유한체적법)

  • Kim, Ki-Sup;Chung, Myung-Kyoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.59-70
    • /
    • 1992
  • A Finite volume method for the computation of the two-dimensional, incompressible, steady, laminar Navier-Stokes equation is developed using a non-staggered grid system in a general curvilinear coordinate. The numerical pressure fluctuations, usually encountered when the non-staggered grid system is used, is suppressed by the momentum interpolation method. Flows around a NACA0012 foil section have been computed by the present method and the results show good agreements with other experimental and numerical ones.

  • PDF

A numerical study of turbulent flows with adverse pressure gradient (역압력 구배가 있는 난류유동에 대한 수치적 연구)

  • 김형수;정태선;최영기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.668-676
    • /
    • 1991
  • Turbulent flows around tube banks and in the diffuser were studied using a non-orthogonal boundary fitted coordinate system and the modified K-.epsilon. turbulence model. In these cases, many problems emerge which stem from the geometrical complexity of the flow domain and the physical complexity of turbulent flow itself. To treat the complex geometry, governing equations were reformulated in a non-orthogonal coordinate system with Cartesian velocity components and discretised by the finite volume method with a non-staggered variable arrangement. The modified K-.epsilon. model of Hanjalic and Launer was applied to solve above two cases under the condition of strong and mild pressure gradient. The results using the modified K-.epsilon. model results in both test cases.

The Numerical Simulation of Flow Field and Heat Transfer around 3-D Tube Banks (3차원 튜브 뱅크 주위의 난류 유동장 및 열전달에 대한 수치 해석적 연구)

  • Park, S.K.;Kim, K.W.;Ryou, H.S.;Choi, Y.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.375-385
    • /
    • 1996
  • Turbulent flow and heat transfer characteristics around staggered tube banks were studied using the 3-D Navier-Stokes equations and energy equation governing a steady incompressible flow, which were reformulated in a non-orthogonal coordinate system with cartesian velocity components and discretized by the finite volume method with a non-staggered variable arrangement. The predicted turbulent kinetic energy using RNG $k-{\varepsilon}$ model was lower than that of standard $k-{\varepsilon}$ model but showed same result for mean flow field quantities. The prediction of the skin friction coefficient using RNG $k-{\varepsilon}$ model showed better trend with experimental data than standard $k-{\varepsilon}$ model result. The inclined flow showed higher velocity and skin friction coefficient than transverse flow because of extra strain rate ($\frac{{\partial}w}{{\partial}y}$). Also, this was why the inclined flow showed higher local heat transfer coefficient than the transverse flow.

  • PDF

DEVELOPMENT OF CFD PROGRAM BASED ON UNSTRUCTURED GRID SYSTEM (비정렬 기반의 CFD 프로그램 개발)

  • Lee, Jung-Hee;Lee, Sang-Hyuk;Lee, Myung-Sung;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.524-529
    • /
    • 2010
  • In the present study, a CFD program is developed for the Fluid-Structure Interaction(FSI) analysis. The non-staggered, non-orthogonal, and unstructured grid system was also used to handle the complicated geometries in the program. In order to validate the capabilities of the developed CFD program, various models are investigated by using unstructured and nonorthogonal meshes. The predicted results are a good agreement with analytic solution, experimental data and commercial software. And also PISO algorithm is applied for transient flow analysis. The cyclic boundary condition and baffle cell are developed in order to improve the effectiveness of the calculation for complex geometry.

  • PDF

A Numerical Study of Smoke Movement In Atrium Space (아트리움 공간에 있어서 연기 유동에 관한 수치해석적 연구)

  • 노재성;유홍선;정연태;김충익;윤명오
    • Fire Science and Engineering
    • /
    • v.11 no.4
    • /
    • pp.3-14
    • /
    • 1997
  • The smoke filling process for the atrium space containing a fire source is simulated using two types of deterministic fire model : Zone model and Field model. The zone model used is the CFAST(version 1.6) model developed at the Building and Fire Research Laboratories, NIST in the USA. The field model is a self-developed frie field model based on Computational Fluid Dynamic (CFD) theories. This article is focused on finding out the smoke movement and temperature distribution in atrium space which is cubic in shape. For solving the liked set of velocity and pressure equation, the PISO algorithm, which strengthened the velocity-pressure coupling, was used. Since PISO algorithm is a time-marching procedure, computing time si very fast. A computational procedure for predicting velocity and temperature distribution in fire-induced flow is based on the solution, in finite volume method and non-staggered grid system, of 3-dimensional equations for the conservation of mass, momentum, energy, species and so forth. The fire model i.e Zone model and Field model predicted similar results for clear heights and the smoke layer temperature.

  • PDF

A NUMERICAL ANALYSIS USING CIP METHOD (CIP 방법을 사용한 해석법)

  • Lee, J.H.;Hur, N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.211-217
    • /
    • 2009
  • The numerical program has been developed for the purpose of the complicate geometries application using CIP method. The non-staggered, non-orthogonal, and unstructured grid system can be also used for the various geometries in the program. For validating CIP solver, the lid-driven cavity flow and solitary wave propagation flow are carried out. Test results show a good agreement with the verified results. The dynamic solver was used for the behavior of moving body. Interface process between the two solvers is introduced. The research was performed on the flow problem around torpedo and log and the flow problem in a tank in order to analyze the three phase flow problem Although the comparison to the verified results was not quantitatively performed, the trend of the results was reasonable.

  • PDF

HYDRODYNAMIC SOLVER FOR A TRANSIENT, TWO-FLUID, THREE-FIELD MODEL ON UNSTRUCTURED GRIDS (비정렬격자계에서 과도 이상유동해석을 위한 수치해법)

  • Jeong, J.J.;Yoon, H.Y.;Kim, J.;Park, I.K.;Cho, H.K.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.44-53
    • /
    • 2007
  • A three-dimensional (3D) unstructured hydrodynamic solver for transient two-phase flows has been developed for a 3D component of a nuclear system code and a component-scale analysis tool. A two-fluid three-field model is used for the two-phase flows. The three fields represent a continuous liquid, an entrained liquid, and a vapour field. An unstructured grid is adopted for realistic simulations of the flows in a complicated geometry. The semi-implicit ICE (Implicit Continuous-fluid Eulerian) numerical scheme has been applied to the unstructured non-staggered grid. This paper presents the numerical method and the preliminary results of the calculations. The results show that the modified numerical scheme is robust and predicts the phase change and the flow transitions due to boiling and flashing very well.

Numerical study for performance analysis and design of a counterflow type cooling tower (대향류형 냉각탑에 대한 설계 및 성능해석을 위한 수치해석적 연구)

  • 이상윤;이정희;최영기;유홍선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.535-549
    • /
    • 1998
  • A numerical study for performance analysis of a counterflow type forced draft tower and natural draft cooling tower has been performed based on the method using the finite volume method with non-orthogonal body fitted and non-staggered grid system. For solving the coupling problem between water and air, air enthalpy balance, moisture fraction balance, water enthalpy balance, and water mass balance equations are solved with Navier-Stoke’s equations simultaneously. For the effect of turbulence, the standard k-$\varepsilon$ turbulent model is implied in this analysis. The predicted result of the present analysis is compared with the experimental data and the commercial software result to validate the present study, The predicted results show good agreement with the experimental data and the commercial software result. To investigate the influence of the cooling tower design parameters such as approach, range and wet bulb temperature, parametric studies are also peformed.

  • PDF

Numerical Study for the Performance Analysis and Design of a Crossflow- Type Forced Draft Cooling Tower

  • Choi, Young-Ki;Kim, Byung-Jo;Lee, Sang-Yun;Lee, Jung-Hee
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.1
    • /
    • pp.1-13
    • /
    • 2000
  • A numerical study for performance analysis of a crossflow-type forced draft cooling tower has been performed based on the finite volume method with non-orthogonal body fitted, and non-staggered grid system. For solving the coupling problem between water and air, air enthalpy, moisture fraction, water enthalpy, and water mass balance equations are solved with Navier-Stoke's equations simultaneously. For the effect of turbulence, the standard k-$\varepsilon$ turbulent model is implied in this analysis. The predicted result of the present analysis is compared with the experimental data and the commercial software result to validate the present study. The predicted results show good agreement with the experimental data and the commercial software result. To investigate the influence of the cooling tower design parameters such as approach, range and wet bulb temperature, parametric studies are also performed.

  • PDF