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Abstract

A Finite volume method for the computation of the two-dimensional, incompressible, steady,
laminar Navier-Stokes equation is developed using a non-staggered grid system in a general
curvilinear coordinate. The numerical pressure fluctuations, usually encountered when the
non-staggered grid system is used, is suppressed by the momentum interpolation method.
Flows around a NACAQQ12 foil section have been computed by the present method and the
results show good agreements with other experimental and numerical ones.
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1. Introduction flows around complicated geometries become pop-
ular in these days. However the basic numerical
With rapid decrease in computing costs, nume- methods for those simulations are quite different
rical simulations of three dimensional turbulent for various applications. New numerical methods
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and solution procedures are still developing and
should be verified for their reliability and efficiency
for each particular application in hand. For the
verification of the numerical method, a two dim-
ensional calculation of laminar flow is still essential.

In this paper a finite volume method for the
computation of the two-dimensional, incompressible,
steady, laminar Navier-Stokes equation is developed
using a non-staggered grid system in a general
curvillinear coordinate. The flow around a NACA
0012 foil section is computed using a body-fitted
grid of C-type. The numerical pressure fluctuations,
usually encounted when the non-staggered grid
system is used, is suppressed by the momentum
interpolation method.

In the formulation for incompressible fluid flow
using primitive variables, one of the most important
problems is how the velocity-pressure coupling is
treated. The velocity-pressure coupling should be
specially considered in both the solution algorithm
and the grid system used. In order to avoid the
checkerboard instability in the pressure field, Hirt
et al{l] used an alternative method in which the
location of pressure calculation is the center of the
control volume and velocity components(u, v) are
defined at the corners. Maliska and Raithby({?]
stored the cartesian velocity comonents at the
center of cell-face, and scalar quantities at the
center of the control volumn. Both methods require
a complex programming, extensive computer sto-
rage and computing time.

Gosman and Ideriah[3], and Shyy et al.[4]
employed the staggered grid usually adopted in
a cartesian coordinate system. Karaki and Patankar
[5] used covariant velocity components as depen-
dent variables in the momentum equations. Cova-
riant velocity components are stored at the cell-face
in staggered grid sense. The method, then, gives
a diagonally dominant pressure correction equation
even in a strongly non-orthogonal grid system. The
success of this method largely depends on the
accuracy of the adapted grid system and the
manipulation of the source terms in the momentum
equations. Demirdzic et al.[6] developed a calculation
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method in which contravariant velocity components
are used as dependent variables for the momentum
equations. The governing equations become extr-
emely complicated and results of the method is
quite grid dependent. However, this approach
usually gives smaller numerical diffusion compared
to other methods,

In non-staggered grid system, all the dependent
variables are computed and stored at the center
of a control volume. Cartesian velocity components
are used as dependent variables in the momentum
equations. This method was firstly proposed by
Rhie and Chow[7] and used by Majumder(8, Miller
and Schmidt[9], Peric{10] and Hsu[11]. The present
study adopts this non-staggered grid system bec-
ause evaluation of the curvature terms, which are
extremely grid dependent, can be avoided and
because a strong conservation from can be obta-
ined. In order to avoide checkerboard pressure
field, momentum interpolation method was adoped.
(8], [9]. The non-staggered grid method used by
Rhie and Chow(7] and Peric{10] gives a solution
which depends on the under-relaxation factors{9).
Such dependence on the under-relaxation factor
would certainly be undesirable feature of their
method. In the present study, momentum interp-
olation method was used to achieve an unique
solution In an iterative algorithm{8]. Computation
results are compard with other numerical and
experimental ones.

2. Governing Equations and Transformation

Governing Equations

A general form of the continuity equation and
the transport equations for the steady, laminar flow
of incompressible fluid is written as, in a cartesian
tensor form,

2 (pu)=0 (1
axi

2 puym P g 2P 9
axi (out) axi + axi (m axi ) @
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where p is the mean density, « the mean velo-

city and p the mean pressure.

Transformation of the Governing Equations

The general differential equation to obey a
generalized conservation principle can be written
in a two-dimensional cartesian coordinate system
as follows :

¢ ¢

—(pu¢)+—<pv¢)=—</ﬁ +— +(,, )+ S,

3

where u 1s molecular viscosity, ¢ denotes arb-
itrary scalar dependent variables and S4 denotes
source terms containing the pressure term. In order
to map the physical domain to the computational
domain, a general transformation using new inde-
pendent variables, such as &(x, y), 7(x, y), must
be adopted. Partial derivatives of any function f
are transformed according to

Se=0fe—yedld CY)

S=(=xfetxef)lJ 5

where the subscripts(é, ) on f(=u, v) denote
differentiation with respective to (£, #). J is the
Jacobian of the transformation given by

J=XgyyXo)e (6)

For integrating the transformed governing diff-
erential equations over finite control volumes, the
Gauss theorem is used. Upon introducing

U=y u—x,v

V=x¢v—yeu

B=xt% @
Bi= —(xex,+yers)

Bi=xXet i,

the integral from of the transformed governing
equations can be written as follows.
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where U, V represent the convection flux in the
é- and the #-direction, respectively.

3. Method of Numerical Computation

Discretization of the Transport Equations

In the finite volumn method[12], the governing
differential equations are integrated over the control
volumes with size, Af=An=1, as shown in Fig.1.

Using the Gauss theorem, the volume integral
can be converted into surface integrals along the
faces of the control volume. The transport equation
integrated over the control volume AV, enclosing
node P can be expressed as:

L—1A+1,—1= j; SedV ©
where
L=(PU §).~ |5 (B4 -+ By8 .

L=V $),— (5 (B gt Bg ),

The volumen integrals of the source terms are
linearized and may therefore be evaluated as fol-
lowing :

[, Sedv=s5+9,5, av (10)

By putting the non-orthogonal terms into source
terms, Eq.(9) can be written,

PU¢———B‘¢ele [PU¢——31¢5

Hove —Lo B l—leve——LrBsd

-[S".+¢ SpAav+sy (11
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where S% is the cross-derivative diffusion flux
arising from the non-orthogonality of numerical
grid and is treated explicitly as a source term to
avoid the possibility of producing negative coeff-
icients in an imr it treatment. It is defined as
5= Bib D~ (5 Bid o

L B0 (55 Bié o, 12

A

O

a) Physical plane

ey (0%

Wo-"1 ~

wo-

A€
b) Transformed plane

Fig. 1 Finite difference grid representation in body
-fitted coordinate system

The hybrid difference scheme is adopted, where
the convective term is evaluated by first-order
upwind differencing for !P.l > 2 and by central
differencing for P! { 2. Central differencing is
adopted for the diffusion terms. P. denotes a
Peclet number which is defined by U-J-¢¢/(x- BY).

Finally, the discretized equation can be obtained
as follows :

Apfp=Ag B et Awd wtAyd vtAsdstby (13)

#7144, A9
where
Ap=Ap+Aw+Ay+As—S5 AV
by=S85+S5.

A’s are coefficients describing the influence of
the neighbouring nodes surrounding the central
node P, and contain contributions from the conv-
ection and normal diffusion. Eq.(13) should be

under-relaxed implicitly in order to achieve num-
erical stability.

Momentum Interpolation Method

Calculation of velocities on the face of control
volume is very important when the Navier-Stokes
equations are solved in a general coordinate system.
After some manipulation of the discretized Navi-
er-Stokes equations of Egs.(12) and (13), face
velocities are calculated by

uy=f, [~ j+ alD}) i-1. ; (Pe—Py)i-1, ]
W A - (DY) 45 - (Pe—Pu) i 5]
—a, - (DY) - (Pp—Py)
F—a) - W7 A T = ST 14

where

a ; under-relaxation factor

(DY)i=Wal 4.,

DDu=0n)w * U A S K ADi-1)

fF, f7 : parameters of linear interpolation

The superscripts n, u denote n-th iteration and
w-momentum equation, respectively, and the sub-
scripts i, j denote index number of nodal points.
And the overbar denotes the results obtained from

linear interpoloation between the grid nodes, ¥,
J! and v can be calculated in the same way.

Pressure correction equation

There is no governing equation to obtain the
pressure field directly. So the equation for pressure
can be obtained by combining the solution of the
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continuity equation and momentum equations.
SIMPLE Algorithm[12], [13] is used to solve the
pressure field. The guessed pressure p* should be
improved in order that the resulting starred velocity
field may progressively get closer to satisfy the
continuity equation. The corrected pressur p is
obtained from

p=p+p° (15)

where p~ is pressure correction. The correspon-
ding velocity correction «”, v~ can be written in
the same manner.

u=u"+u" (16)
v=v*+4v~ Qan

Substituting the Egs.(15), (16) and (17) into the
discretized momentum equations, Eq.(13), the
velocity correction is obtained as:

u=—a,+ (DY), - (P,~P,) (18)
ue=—a, - (DY), - (P,~P)) (19)

In order to obtain the pressure correction equa-
tion, Eqs.(16), (17), (18) and (19) are substituted
into the discretized continuity equation,

Ap Po=Ap- PrtAy - Pyt An- PytAs Pe+F (20)
where,

Ag i@ () - (Df)e—a. - (Xy)e - (D)
Aw e, G - (D= @ (%) - (D
Ay i@, (X - (Dp)y—y - (e)n - (DB,
As iy (xe)s - (Do)— @ - (ve)s - (D),
Ap . Apt+AwtAy+As

F* :Net efflux over the control volume

After the pressure correction equation (20) is
solved iteratively, the cell velocities are corrected
by Egs.(16) through (19) and the pressure is up-
dated by Eq.(15).

Boundary Conditions

KEEEEERCE H29% 38 19924 8H
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In order for a given problem to be well posed,
boundaryaconditions for the solution domain are
required, so that the resultant solution will be
unique. The boundary conditions required for this
problem are ; Up-stream, Down-stream, Surface of
the hydrofoil, External lateral and periodic boundary
conditions. The physical domain, Fig. 2-(a), for a
hydrofoil, is transformed to the computational
domain, Fig. 2-(b). Details of the boundary condi-
tions are as follows

Branch
cut

O%L

)

el H

a) Physical domain.

H G F E

A B c D'

A B o] D
" Bll C" D 4

b) Transformed domain

Fig. 2 Solution domain for a hydrofoil

a) Up-stream(FG in Fig. 2)

u==U, - cosa

v=Uj - sina

where U, is the oncoming total velocity and
a 1s the angle of attack of the freestream.
b) Down-stream(AH, DE in Fig. 2)
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u=v,=p,=0

where the subscript denotes differentiation.
The downstrearn boundaries are placed far
enough from the hydrofoil such that the local
flow of this down-strearn has parabolic cha-
racteristics.
¢) Surface of the hydrofoil(BC in Fig. 2)

Non-slip and impermeable conditions are
imposed on the surface.

d) External lateralEF, GH in Fig. 2)

~—

u=Uj + cosa

p=0

The v-velocity component in this boundary
is obtained from the law of mass conservation
within the computational control volume
during the solution procedure.

e) Periodic boundary(AB, CD in Fig. 2)

~—

¢ on the line A'B’= ¢ on the line D" C’
¢ on the line C'D"=4¢ on the line B” A"

where ¢ is the dependent variable(=u, v,
p). This boundary condition should be well
adapted to satisfy the conservation rule for
all physical quantities because this boundary
is a kind of branch cut. C-type grid needs
this boundary condition.

Solution Procedure

The discretized differential equations with the
above mentioned boundary conditions are solved
iteratively. The solution algorithm is summarized
briefly as follows:

i ) Intermediate velocity components are obtained
by solving the momentum Eq.(13), using the
pressure field calculated at previous iteration.

ii} The cell-velocities are calculated using Eq.
(14).

iii) The pressure correction equation is solved
using Eq.(20).

iv) Intermediate face-velocities and centered

UV, At

velocities are updated using Eqgs.(16) through
(19). Also, intermediate pressure field is
updated using the pressure correction Eq.
(15).

v) Using these updated velocities and pressure,
the whole procedure is repeated until a
converged solation is obtained.

Each discretized governing equation is solved
using a tridiagonal-matrix algorithm iteratively.
Convergence is considered to be complete if the
residual of the governing equations throughout the
computation domain decreases to an infinitesimal

value.
Numerical Grid

The advantages of curvilinear coordinates gen-
erated from the elliptic partial differential equations
are the inherent smoothness that prevails in the
solution of the elliptic systems, and the fact that
some elliptic partial differential equations guarantée
a one-to-one mapping between the physical and
transformed domains. In the present study, the
transformed poisson equations, initially proposed
by Thompson et al.[14], [15], [16], are used,

@ xXee—28  XeyHY X

=—JP x40 - xy) 1)
- ye—28 " Yoyt Vm

=—JFP - yet+0Q - y) (22)
where

x = x(& »

y =yé

a = L+

B = xg* Xgtye Va

y = %+i

J o= x¢* y,~Xn e

The forcing functions P and Q are used as the
controlling functions for contracting grids about
a particular grid line [16]. The transformed Eqgs.
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a) Grid for horizontal hydrofoil.
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by Grid far rotated hydrofoil by 5°

Fig. 3 Details of generated grid near body after reconstruction

(21) and (22), are easy to specify the boundary
conditions for the contours. The generated grids
is highly skewed in the wake region and have
discontinuity in slope along the branch cut. In order
to improve the gualty of the generated grids, grid
lines along the branch cut are recontracted using
a cubic spline interpolation. The resulting grid are
shown in Fig. 3.

4. Numerical Computations

A numerical code has been constructed and
verified for the following computations.

Laminar flow results

The flow over a hydrofoll(NACA 0012) at zero

KuER R R F20% 3% 19924 84

incedence is computed when R,=10,000. A total
number of 154 X 70 grid points is used for the gnd
generation when 89 grid points were distnibuted
on the hydrofoil surface. The upstream boundary
is placed at a distance of 8.5 times the chord
length from the leading edge. The boundaries at
the downstream and external laterals are located
at a distance of 10 times the chord length, The
minimum grid spacing in the #»-direction was
0.000798 times the chord length. Fig.3-(a) shows
the gnd system used.

The pressure distibution on the hydrofoil surface
is plotted in Fig. 5. Comparisons of the present
results with other results show good agreement
even after the separation point. The results confirm
that the present numerical scheme has sufficient
accuracy to carry out other complex flow compu-
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Wall of water tunnel

(7.5, 1
A L L L 2 ff-‘-
Yy
Flow direction a®
= %
— arararars At
(75, 1)

Fig. 4 Boundaries of the water tunnel used in
numerical computation

-0.80 v - —_—

(a) Iso-pressure contour

Cp

~—— Present (C-type grid, full body)
o.s0 ff = ----- Steger{22] (C-type grid, full body) |
©0@ Rhie[19] (half body)

AAA  Shin[23] (H-type grid, full body)
Oaa Obasik[20]{C-type, full body)

[ ®  Separation pt. of present sol.

S  Separation pt.

- . ek n

0.00 0.20 0.40 0.80 0.80 1.0 (b) Stream lines
x/chord

Fig. 5 Comparision of surface pressure coefficient
distribution for NACA 0012 Foil, Ry=10* and

a=0

tations. Fig. 6-(a), (b), (c) show the iso-pressure
contours, streamlines and velocity vector, respect-
ively. These results show good pressure-velocity
coupling even though the C-type grid system has
been used. Fig. 7 shows convergence history of
the solution. Number of iterations to obtain the

converged solution is dependent on the under-rel-
axation factor. About 300 iterations are required -
for convergence, which takes about 150 minutes
in a personal computer(PC 386 with Weitek, 25MH
z). Figs. 8 and 9 show the results for they hyd-

(¢) Velocity vectors

rofoil with 5 degree angle of attack. The grid
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(&) Close-up of vel. vector around trailing edge

Fig. 6 Laminar fiow for Ry=10' and a=(0"°
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(= ! v-mom. eq.
AR
.
.
’ continuity eq.
16~
’

0.00 200,00 400.00 600.00 BOC.OO 1000.00
Number of Iteration
Fig. 7 Convergence history of governing equations (Rn==10%, 0 incidence)
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Euler Sclution
000 Experiment{17], By = 1.3 x 108

A L

ek A A

Qo
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o
R 0.4 0.8 9,8 1.0 ¢.0
x/chord

v.2 L, 0.4 0.8 e.8 1,0

x/chord

Fig. 8 Pressure coefficient distribution, Ry=10* and
a==5°

Fig. 10 Comparision of pressure coefficient distri-
bution, a=0°

TSN

{a) Iso-pressure contrours

(a) lso-pressure contrours

(b) Stream lines

(b) Stream lines

Fig. 9 Laminar flow for Ry=10¢ and a=5° Fig. 11 Euler solution considering the blockage
effect of tunnel wall, a=0°
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system and all boundary conditions are the same
as before. Laminar separation is found at a dist-
ance of 359, chord-fraction from the leading edge.

Euler solution results

The effects of viscosity on the surface pressure
field is small if Reynolds number is high and the
hydrofoil is operating at zero angle of attack. In
order to validate the code, solution to the Euler
equation, absent of the viscous terms in Eq.(2),
is compared with the experimental data[17] at high
Reynolds number.

In order to simulate the experimental conditions,
the grid considering the wall of the water tunnel
was generated. The boundaries of the physical
domain are depicted in Fig. 4. Boundary layer
development on the tunnel wall was neglected and
slip boundary condition was applied on the wall
surface. Fig. 10 shows the pressure distribution
on the surface of the hydrofoil when angle of
attack is 0 degree. Where qualitatively good ag-
reements with the experimental data is found. Fig.
11(a), (b) shows the iso-pressure contours and
streamlines, respectively.

5. Conclusions

Computational method for the calculation of the
recirculating laminar flow in general body-fitted
coordinate system was developed. The checkerboard
instability, usually encountered when the non-sta-
ggered grid system is used, is removed by applying
the momentum interpolation method. The computer
program developed in the present study is useful
for solving the engineering problems involving
complex geometries, such as hydrofoils.
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