• 제목/요약/키워드: Non-staggered grid

검색결과 68건 처리시간 0.028초

PISO 알고리즘에서 난류예측의 후생성과 보완에 대한 연구 (A Study on Delay and Modification in Predicting Turbulence Flow in PISG Algorithm)

  • 이재원;유홍선;강관구
    • 한국전산유체공학회지
    • /
    • 제7권1호
    • /
    • pp.1-9
    • /
    • 2002
  • In this paper, a modification of PISO algorithm based on standard k-ε turbulence model was proposed. The numerical technique used in this research is finite volume method, hybrid scheme for discretizing convection term, Euler implicit scheme for discretizing time term, and non-staggered grid. The basic idea of the modification of PISO algorithm is to perform an additional corrector stage for turbulence kinetic energy and dissipation rate to correct the inconsistence of flow and turbulence. In order to validate this algorithm, simulation of flow around a square cylinder (Re=3000) was performed in two-dimensional case. The results obtained from the proposed scheme show better agreement with those from the experiment than using original PISO algorithm in coherent velocity field.

박슬라브 주형에 따른 용강내의 상변화현상에 대한 수치적 해석 (Numerical Prediction of Phase Change within the Molten Steel with Thin Slab Casting)

  • 최원록;유홍선;최영기
    • 한국안전학회지
    • /
    • 제15권3호
    • /
    • pp.14-22
    • /
    • 2000
  • A numerical analysis has been performed on the two-dimensional rectangular gallium melting problem using the enthalpy method. The major advantage of this method is that the physical domain is discretized with fixed grids without transforming variables and the interface conditions of phase change are accounted for the definition of suitable source terms in the governing equations. But in the fixed method, there is some ambiguity in defining the porosity constant which has no physical interpretation. If the velocity correction is included in the momentum equation, for the appropriate range of porosity constant, the realistic predictions are obtained. The object of the present work is to predict the phase change within the molten steel with thin riser slab using the modified enthalpy-porosity method. The computational procedures for predicting velocity and temperature are based on the finite volume method and the non-staggered grid system. The influence of natural convection on the melting process is considered. A comparison with the experimental results shows that the modified method is better than the previous one.

  • PDF

수정된 CIP방법을 이용한 벽면 충돌 후 액적의 퍼짐 현상에 대한 수치해석 연구 (NUMERICAL STUDY ON DROPLET SPREAD MOTION AFTER IMPINGEMENT ON THE WALL USING IMPROVED CIP METHOD)

  • 손소연;고권현;이성혁;유홍선
    • 한국전산유체공학회지
    • /
    • 제15권4호
    • /
    • pp.25-31
    • /
    • 2010
  • Interface tracking of two phase is significant to analyze multi-phase phenomena. The VOF(Volume of Fluid) and level set are well known interface tracking method. However, they have limitations to solve compressible flow and incompressible flow at the same time. CIP(Cubic Interpolate Propagation) method is appropriate for considering compressible and incompressible flow at once by solving the governing equation which is divided up into advection and non-advection term. In this article, we analyze the droplet impingement according to various We number using improved CIP method which treats nonlinear term once more comparison with original CIP method. Furthermore, we compare spread radius after droplet impingement on the wall with the experimental data and original CIP method. The result using improved CIP method shows the better result of the experiments, comparison with result of original CIP method, and it reduces the mass conservation error which is generated in the numerical analysis comparison with original CIP method.

Couette-Poiseuille flow based non-linear flow over a square cylinder near plane wall

  • Bhatt, Rajesh;Maiti, Dilip K.;Alam, Md. Mahbub;Rehman, S.
    • Wind and Structures
    • /
    • 제26권5호
    • /
    • pp.331-341
    • /
    • 2018
  • A numerical study on the flow over a square cylinder in the vicinity of a wall is conducted for different Couette-Poiseuille-based non-uniform flow with the non-dimensional pressure gradient P varying from 0 to 5. The non-dimensional gap ratio L (=$H^{\ast}/a^{\ast}$) is changed from 0.1 to 2, where $H^{\ast}$ is gap height between the cylinder and wall, and $a^{\ast}$ is the cylinder width. The governing equations are solved numerically through finite volume method based on SIMPLE algorithm on a staggered grid system. Both P and L have a substantial influence on the flow structure, time-mean drag coefficient ${\bar{C}}_D$, fluctuating (rms) lift coefficient ($C_L{^{\prime}}$), and Strouhal number St. The changes in P and L leads to four distinct flow regimes (I, II, III and IV). Following the flow structure change, the ${\bar{C}}_D$, $C_L{^{\prime}}$, and St all vary greatly with the change in L and/or P. The ${\bar{C}}_D$ and $C_L{^{\prime}}$ both grow with increasing P and/or L. The St increases with P for a given L, being less sensitive to L for a smaller P (< 2) and more sensitive to L for a larger P (> 2). A strong relationship is observed between the flow regimes and the values of ${\bar{C}}_D$, $C_L{^{\prime}}$ and St. An increase in P affects the pressure distribution more on the top surface than on bottom surface while an increase in L does the opposite.

Level Set 법을 이용한 삼차원 이상유동 해석에 관한 연구 (A THREE DIMENSIONAL LEVEL SET METHOD FOR TWO PHASE FLOWS)

  • 강동진;이벨리나이바노바이바노바
    • 한국전산유체공학회지
    • /
    • 제13권4호
    • /
    • pp.126-134
    • /
    • 2008
  • We developed a three dimensional Navier-Stokes code based on the level set method to simulate two phase flows with high density ratio. The Navier-Stokes equations with consideration of the surface tension effects are solved by using SIMPLE algorithm on a non-staggered grid. The present code is validated by simulating two test problems. First one is to simulate a rising bubble inside a cube. The thickness of the interface of the bubble is shown to affect the pressure distribution around the interface. As the thickness decreases, the pressure field around the interface becomes more oscillatory. As the bubble rises, a ring vortex is shown to form around the interface and the bubble eventually develops into an ellipsoidal shape. Merge of two bubbles inside a container is secondly tested to show the robustness of the present code for two phase flow simulation. Numerical results show stable and reliable behavior during the process of merging of two bubbles. The velocity and pressure fields around the interface of bubbles are shown oscillation free during the merging of two bubbles.

Bi-CGSTAB 해법에 의한 복합격자망 해석방법에 관한 연구 (A Study on Multi-Block Technique by Bi-CGSTAB Solver)

  • 배진효;이재헌
    • 대한기계학회논문집B
    • /
    • 제20권8호
    • /
    • pp.2611-2625
    • /
    • 1996
  • A numerical method on multi-block technique by Bi-CGSTAB(Bi-Conjugate Gradient STABilized) solver has been proposed. The present multi-block technique can reduce the numerical manipulation greatly because the common regions at the interface of each block are not necessary. In order to test the computational performance of present multi-block technique, the flow characteristics in a T type duct system and a N type duct system have been investigated by three kinds of methods such as the single-block method, the previous multi-block technique and the multi-block technique with Bi-CGSTAB solver. The results indicated that the required CPU time by present multi block technique was shorter than that of other two numerical methods and the convergency history was shown very stable at the present multi-block technique.

아트리움 공간에 있어서 화재에 의한 연기 유동에 관한 수치해석적 연구

  • 노재성;유홍선;정연태
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 1997년도 추계 학술논문발표회 논문집
    • /
    • pp.43-48
    • /
    • 1997
  • 아트리움 공간에서 화재 발생시 연기 유동에 대하여 두 가지 형태의 화재 모델인 zone 모델과 field 모델을 이용하여 시뮬레이션 했다. 사용된 zone model은 NIST에서 개발된 CFAST(version 1.6) 모델이며 field 모델은 전산유체역학 이론을 바탕으로 자체 개발된 화재 모델이다. 본 연구는 정육면체 모양의 아트리움 공간에서 연기 유동과 온도 분포에 대하여 해석하고자 한다. 화재로 인해 야기된 유동에 대하여 속도장과 은도장을 예측하기 위한 계산 과정은 유한체적법 및 비엇갈림격자계를 이용하여 질량, 운동량, 에너지 및 성분 보존 방정식등에 대한 3차원 비정상상태 지배방정식을 사용했다. 수치해석 결과 zone 모델과 field 모델의 화재 모델에 의해 예측된 연기 층 평균 경계놀이와 상부 더운 연기 층의 평균 온도에 대하여 거의 유사한 결과를 얻었다.

  • PDF

고입사각 압축기 익렬내의 3차원 난류유동에 관한 수치적 연구 (Numerical Study for 3D Turbulent Flow in High Incidence Compressor Cascade)

  • 안병진;정기호;김귀순;임진식;김유일
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2002년도 제18회 학술발표대회 논문초록집
    • /
    • pp.35-40
    • /
    • 2002
  • 2차원, 3차원 비압축성 Navier-Stokes 방정식을 이용하여 DCA 압축기 익렬의 수치해석을 수행하고, 여러 가지 입사각에 대해 실험치와 비교.검토하였다. SIMPLE 알고리즘을 적용한 2차원, 3차원 코드는 대류항의 이산화에 하이브리드 도식을, 진동해를 방지하기 위해 집중격자 기법(PWIM)을 사용하였다. 캐스케이드 유동을 예측하는데 있어서 가장 중요한 요소 중의 하나가 난류모델링이다. 이는 캐스케이드 내의 유동이 역압력구배에 의한 박리와 재부착 등의 복잡한 양상을 보이기 때문이다. 본 연구에서는 계산시간의 효율을 위해 k-$\varepsilon$ 벽법칙 모델을 사용하였다.

  • PDF

정사각형 단면을 갖는 90° 곡관의 층류유동 계산 (Numerical calculation of Laminar flow in a Square Duct of 90° Bend)

  • 김형태;김정중
    • 한국전산유체공학회지
    • /
    • 제2권1호
    • /
    • pp.1-7
    • /
    • 1997
  • A FA-FD hybrid method, developed for solving three-dimensional incompressible Navier-Stokes equations, is applied to calculate three-dimensional laminar flows through a square duct with a 90° bend. The method discretizes the convective terms in the primary flow direction with 3rd-order upwind finite-differences and the convective and diffusive terms in the transverse directions with the two-dimensional finite analytic method. The non-staggered grid system is used and the pressure-velocity coupling is achieved by a global iteration procedure based on the PISO algorithm. Detailed comparisons between the computed solutions and the available experimental data are given mainly for the velocity distributions at cross-sections in a 90° bend of a square duct with both fully developed and developing entry flows. Although the computational result shows generally a good agreement with the experimental data, there are some significant discrepancies underlining the necessity of more accurate numerical methods as well as reliable experimental data for their validation.

  • PDF

라디에이터용 납작관의 최적형상 도출을 위한 열.유동해석 (Flow and Thermal Analyses for the Optimal Specification of Flat Tube at Radiator)

  • 박경우;박희용
    • 대한기계학회논문집B
    • /
    • 제24권8호
    • /
    • pp.1046-1055
    • /
    • 2000
  • The flow and thermal phenomena in flat tubes of radiator are analyzed numerically. To predict the characteristics of heat transfer and pressure drop, the flow analysis program for three-dimensional complex geometry is developed, which adopted an non-staggered grid system and Cartesian velocities as dependent variables of the momentum equations. Using the developed program, the effect of tube specifications on the heat transfer characteristics is investigated for various flat tubes. From this study, the following results are obtained; (1) For the same hydraulic diameter($D_h{\doteq}5.2$mm), the Nusselt numbers of three basic modeis(D, J, and H-model) are 8.71, 8.92, and 10.58, respectively, and the pressure drops of D-, J-, and H-model are predicted as $-3.08{\times}10^{-2}\;Pa,\;-3.12{\times}10^{-2}\;Pa,\;and\; -3.98{\times}10^{-2}$ Pa, (2) In case of the same flat tube specification, the fins must be brazed at upper tube surface because the heat is more vividly transferred. Therefore, it is found that the H- model is the most effective tube as a heat exchanger and these results are used as a fundamental data for the design of tube.