• Title/Summary/Keyword: Non-slip

Search Result 260, Processing Time 0.035 seconds

FE-based On-Line Model for the Prediction of Roll Force and Roll Power in Finishing Mill (II) Effect of Tension (유한요소법에 기초한 박판에서의 압하력 및 압연동력 정밀 예측 On-Line모델 (II) 장력의 영향)

  • KWAK W. J.;KIM Y. H.;PARK H. D.;LEE J. H.;HWANG S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.121-124
    • /
    • 2001
  • On-line prediction model which calculate roll force, roll power and forward slip of continuous hot strip rolling was built based on the results of plane strait rigid-viscoplastic finite element process model. Using the integrated FE process model, a series of finite element simulation was conducted over the process variables, and the influence of various process conditions on non-dimensional parameters was inspected. The prediction accuracy of the proposed on-line model under front and back tension is examined through comparison with predictions from a finite element process model over the various process conditions. In addition, we examined the validity of the on-line prediction model through comparison with roll force of experiment in hot rolling.

  • PDF

Flexural Behavior of Reinforced Concrete Beams Strengthened by CFRP Plates (탄소섬유판으로 보강된 철근콘크리트 보의 휨거동해석)

  • Yang, Dong-Suk;Koh, Byung-Soon;Park, Sun-Kyu;You, Young-Chan;Choi, Ki-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.243-246
    • /
    • 2005
  • This paper focuses on the flexural behavior of RC beams externally reinforced using Carbon Fiber Reinforced Plastics plates (CFRP). A non-linear finite element (FE) analysis is proposed in order to complete the experimental analysis of the flexural behaviour of the beams. This paper is a part of a complete program aiming to set up design formulate to predict the strength of CFRP strengthened beams, particularly when premature failure through plates-end shear or concrete cover delamination occurs. An elasto-plastic behaviour is assumed for reinforced concrete and interface elements are used to model the bond and slip.

  • PDF

Modeling and Evaluation of Slip-Mode Frequency Shift Method for Anti-islanding Method (슬립모드 방식을 이용한 단독운전 검출기법의 모델링과 평가)

  • Yu, Byung-Gyu;Jung, Young-Seok;So, Jung-Hun;Yu, Gwon-Jong
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.520-522
    • /
    • 2005
  • Islanding phenomenon is undesirable because it lead to a safety hazard to utility service personnel and may cause damage to power generation and power supply facilities as a result of unsynchronized reclosure. In order to prevent this phenomenon, various anti-islanding methods have been studied. Even though the slip mode frequency shift (SMS) method has been regarded as a highly effective anti-islanding method, the analytical design method of that was not cleared. This paper proposes a modeling of the SMS method using non-detection zone (NDZ) and evaluation of the method according to the test conditions of IEEE Std. 929-2000. The SMS method is derived analytically through the modeling and verified visually by simulation and experiment.

  • PDF

Analysis and Modeling of Slip Mode Frequency Shift Method for Anti-islanding (슬립모드 주파수변이 방식의 단독운전 검출법의 분석과 모델링)

  • Yu, Byung-Gyu;Jung, Young-Seok;So, Jung-Hun;Yu, Gwon-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1699-1701
    • /
    • 2005
  • Islanding phenomenon is undesirable because it lead to a safety hazard to utility service personnel and may cause damage to power generation and rower supply facilities as a result of unsynchronized reclosure. In order to prevent this phenomenon, various anti-islanding methods have been studied. Even though the slip mode frequency shift(SMS) method has been regarded as a highly effective anti-islanding method, the analytical design method of that was not cleared. This paper proposes a modeling of the SMS method using non-detection tone(NDZ) and evaluation of the method according to the test conditions of IEEE Std. 929-2000. The SMS method is derived analytically through modeling and verified visually by simulation and experiment.

  • PDF

Impact in bioconvection MHD Casson nanofluid flow across Darcy-Forchheimer Medium due to nonlinear stretching surface

  • Sharif, Humaira;Hussain, Muzamal;Khadimallah, Mohamed A.;Naeem, Muhammad Nawaz;Ayed, Hamdi;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.791-798
    • /
    • 2021
  • Current investigation aims to analyze the characteristics of magnetohydrodynamic boundary layer flow of bioconvection Casson fluid in the presence of nano-size particles over a permeable and non-linear stretchable surface. Fluid passes through the Darcy-Forchheimer permeable medium. Effect of different parameter such as Darcy-Forchheimer, porosity parameter, magnetic parameter and Brownian factor are investigated. Increasing Brownian factor leads to the rapid random movement of nanosize particles in fluid flows which shows an expansion in thermal boundary layer and enhances the nanofluid temperature more rapidly. For large values of Darcy-Forchheimer, magnetic parameter and porosity factor the velocity profile decreases. Higher values of velocity slip parameter cause decreasing trend in momentum layer with velocity profile.

Robust Digital Nonlinear Friction Compensation-Application (견실한 비선형 마찰보상 이산제어 - 응용)

  • Kang, M.S.;Song, W.G.;Kim, C.J.;Lee, S.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.108-117
    • /
    • 1997
  • To prove the stability and the effectiveness of the robust non-linear friction control suggested and proved analytically in the previous paper, the describing function analysis is introduced. The instability of the Southward's nonlinear friction compensation for a digital position control and the improvement of phase margin of the robust nonlinear friction compensation are verified qualitatively through the describing function analysis. Those controls are applied to a single-axis digital servo driving experimental setup which has inherent stick-slip friction and experimental results confirm the results obtained in and the effectiveness of the robust nonlinear friction compensation for a digital position control.

  • PDF

Prediction of Texture Evolution of Aluminum Extrusion Processes using Rigid-Plastic Finite Element Method based on Rate-Independent Crystal Plasticity (강소성 유한 요소 해석에 연계한 Rate-Independent 결정소성학을 이용한 3차원 알루미늄 압출재에서의 변형 집합 조직 예측)

  • Kim K.J.;Yang D.Y.;Yoon J.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.485-488
    • /
    • 2005
  • Most metals are polycrystalline material whose deformation is dominated by the slip system. During the deformation process, orientation of slip systems is rearranged with preferred orientations, leading to deformation-induced crystallographic texture which is called deformation texture. Depending on the texture development, the property of material can be changed. The rate-independent crystal plasticity which is based on the Schmid law as a yield function causes a non-uniqueness in the choice of active slip systems. In this work, to avoid the slip system ambiguity problem, rate-independent crystal plasticity model based on the smooth yield surface with rounded-off corners is adopted. In order to simulate the polycrystalline material under plastic deformation, we employ the Taylor model of polycrystal behavior that all the grains are assumed to be subjected to the macroscopic velocity gradient. Rigid-plastic finite element program based on this rate-independent crystal plasticity is developed to predict the grain-level deformation behavior of FCC metals during metal forming processes. In the finite element calculation, one integration point is considered as a crystalline aggregate which has a number of crystals. Macroscopic behavior of material can be deduced from the behavior of aggregates. As applications, the extrusion processes are simulated and the changes of mechanical properties are predicted.

  • PDF

Enhanced solid element for modelling of reinforced concrete structures with bond-slip

  • Dominguez, Norberto;Fernandez, Marco Aurelio;Ibrahimbegovic, Adnan
    • Computers and Concrete
    • /
    • v.7 no.4
    • /
    • pp.347-364
    • /
    • 2010
  • Since its invention in the $19^{th}$ century, Reinforced Concrete (RC) has been widely used in the construction of a lot of different structures, as buildings, bridges, nuclear central plants, or even ships. The details of the mechanical response for this kind of structures depends directly upon the material behavior of each component: concrete and steel, as well as their interaction through the bond-slip, which makes a rigorous engineering analysis of RC structures quite complicated. Consequently, the practical calculation of RC structures is done by adopting a lot of simplifications and hypotheses validated in the elastic range. Nevertheless, as soon as any RC structural element is working in the inelastic range, it is possible to obtain the numerical prediction of its realistic behavior only through the use of non linear analysis. The aim of this work is to develop a new kind of Finite Element: the "Enhanced Solid Element (ESE)" which takes into account the complex composition of reinforced concrete, being able to handle each dissipative material behavior and their different deformations, and on the other hand, conserving a simplified shape for engineering applications. Based on the recent XFEM developments, we introduce the concept of nodal enrichment to represent kinematics of steel rebars as well as bonding. This enrichment allows to reproduce the strain incompatibility between concrete and steel that occurs because of the bond degradation and slip. This formulation was tested with a couple of simple examples and compared to the results obtained from other standard formulations.

A Study on Material Degradation and Fretting Fatigue Behavior (재질 열화와 프레팅 피로거동 평가에 관한 연구)

  • Gwon, Jae-Do;Seong, Sang-Seok;Choe, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1287-1293
    • /
    • 2001
  • Fretting is a potential degradation mechanism of structural components and equipments exposed to various environments and loading conditions. The fretting degradation, for example, for example, can be observed in equipments of nuclear, fossil as well as petroleum chemical plants exposed to special environments and loading conditions. It is well known that a cast stainless steel(CF8M) used in a primary reactor coolant(RCS) degrades seriously when that material is exposed to temperature range from 290$\^{C}$∼390$\^{C}$ for long period. This degradation can be resulted into a catastrophical failure of components. In the present paper, the characteristics of the fretting fatigue are investigated using the artificially aged CF8M specimen. The specimen of CF8M are prepared by an artificially accelerated aging technique holding 180hr at 430$\^{C}$ respectively. Through the investigations, the simple fatigue endurance limit of the virgin specimen is not altered from that obtained from the fatigue tests imposed the fretting fatigue. The similar tests are performed using the degraded specimen. The results are not changed from those of the virgin specimen. The significant effects of fretting fatigue imposed on both virgin and degraded specimen on the fatigue strength are not found.

A Study on the Numerical Stability and Accuracy of Lattice Boltzmann Method with Non-equilibrium first order extrapolation boundary condition (비평형 1 차 외삽 경계조건을 이용한 격자 볼츠만 법의 수치적 안정성 및 정확도에 관한 연구)

  • Jeong, Hae-Kwon;Kim, Las-Sung;Lee, Hyun-Goo;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2684-2689
    • /
    • 2007
  • Non-equilibrium first order extrapolation boundary condition proposed by Guo et $al.^{(9)}$ proposed has a good application for complex geometries, a second order accuracy and a treatment on non-slip wall boundary condition easily. However it has a lack of the numerical stability from high Reynolds number. Guo et $al.^{(9)}$ substituted the density value of adjacent nodes for the density of boundary nodes. This procedure causes the numerical instability on the boundary. In this paper, we derived a procedure of density extrapolation and compared to previous results.

  • PDF