• Title/Summary/Keyword: Non-shrinkage mortar

Search Result 24, Processing Time 0.022 seconds

An Application of Shrinkage Compensation Mortar in Construction Field (수축 보상 모르타르의 현장 적용 연구)

  • 김기동;정성철;송명신;이경희
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.3-10
    • /
    • 2000
  • In this study, we compared a plain mortar with the CAS-system shrinkage compensation mortar for Ondol that is Korean traditional heating system. The Ondol mortar is necessary to have properties as non-crack, fine flatness and stability for thermal changes. especially, mortar'crack prevention is to be most important property in Ondol mortar. To develope the stable material on the crack-prevention, we used to calcium-sulfo-aluminate(CSA)system in shrinkage compensation mortar. And so, we confirmed the effects of calcium-sulfo-aluminate(CSA) system for mortar's physical properties such as setting time, compressive strength and expansion ratio for crack prevention. The initial and final setting time of the CSA mortar is faster than plain mortar about 2hours. And, Compressive strength increased about 20% that plain mortar. The crack length per unit area, plain mortar is 0.426∼0.481m/m2. The Results of apartment construction field test, the shrinkage compensation mortar is excellent about the crack-reduce effect.

Pullout capacity Evaluation of anchor and anchor system development to prevent release of anchors in expansion joint (신축이음장치의 앵커 인발성능 평가 및 나사 풀림 방지를 위한 앵커시스템 개발)

  • Ha, Sang-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.1
    • /
    • pp.65-72
    • /
    • 2010
  • The failure of expansion joints for bridges generally occurs in non-shrinkage mortar another problem is the release of anchors in expansion joints due to the impact and vibration that occurs when cars are driving over a bridge. In this study, to overcome the failure of expansion joints that is related to the failure of non-shrinkage mortar, an elastomeric mortar has been developed. The elastomeric mortar has a highly developed pull-out capacity compared with that of non-shrinkage mortar. Moreover, an anchor system that can be changed easily and prevent the fracture of expansion joints has been developed.

Effect of Unsaturated Polyester Resin Content on Properties of PMMA Mortars (PMMA 모르타르의 성질에 미치는 불포화 폴리에스테르 수지 첨가율의 영향)

  • Choi Nak Woon;Lee Chol Woong;Kim Wan Young;So Yang Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.332-335
    • /
    • 2004
  • Polymethyl Methacrylate(PMMA) mortars using EPS solution-based binders are prepared with various unsaturated polyester resin(UP) contents of binder, and tested for working life. heat exothorm temperature, length change. compressive strength and temperature dependence of compressive strength. As a result, the working life of PMMA mortar is lengthened with raising UP content of binder. Length change of the mortar was condensed from expansion to shrinkage with increasing UP content, and non shrinkage of the mortar is obtained at about UP content of $2.5\%$. The compressive strength of the mortar is increased with an increase in the UP content and reach maximum at UP content of $5\%$. However thermal resistance improvement of the mortar by increasing UP content was not recognized. UP resin was recommended as an effective agent for shrinkage control and strength development of PMMA mortar.

  • PDF

Evaluation of Hardening Properties and Dry Shrinkage of Non-Sintered Binder Based Floor Mortar Utilizing Alpha-Hemihydrate Gypsum (알파반수석고를 활용한 비소성결합재 기반 바닥 모르타르의 경화특성 및 건조수축 평가)

  • Lee, Kye-Hyouk;Kim, Gyu-Yong;Lee, Bo-Kyeong;Kim, Rae-Hwan;Shin, Kyoung-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.359-365
    • /
    • 2015
  • Floor mortar experiences dry shrinkage by temperature and humidity difference of internal matrix with material type. Also, since floor mortar is influenced by environmental conditions during placing and curing period, cracks are likely to be occurred. In this study, it was evaluated the hardening and dry shrinkage properties of non-sintered binder based floor mortar utilizing alpha-hemihydrate gypsum which has expansibility in order to prevent crack of the floor mortar. It was applied to the construction site, and examined the effects of external environmental conditions on shrinkage deformation and cracking. Different types of slag accelerated initial and final setting in comparison with cement mortar and its compressive strength was satisfied standard compressive strength for floor mortar. Also shrinkage deformation behavior after the initial expansion exhibited a similar tendency with the cement mortar. From the field application result, no crack was found from slag mortar, and it is determined that the slag mortar has better dimensional stability than cement mortar caused by external environment conditions.

Anchor system in order not to Unscrew of Expansion Joint for Bridge (신축이음장치에서 나사 풀림을 방지하기 위한 앵커시스템)

  • Ha, Sang-Su;Choi, Dong-Uk;Lee, Chin-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.793-796
    • /
    • 2008
  • The failure of expansion joint for bridge is generally occurred on the non-shrinkage mortar and other problem is the release of anchors in expansion joint due to the impact and vibration during the driven car on the bridge. In this study, to overcome the failure of expansion joint by the failure of non-shrinkage, the elastomeric mortar is developed. The pull-out capacity developed elastomeric mortar compared with that of non-shrinkage mortar. Moreover the anchor system which can be change easily and prevent a fracture of expansion joint is developed.

  • PDF

The Evaluation of Performance of Finishing Mortar in Ondol Floor Structure Using High-Calcium Fly Ash (고칼슘 플라이애시를 활용한 온돌 바닥용 모르타르의 물성 평가)

  • Lee, Yeong-Won;Song, Young Chan;Kim, Yong-Ro;Mun, Kyoung-Ju
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.289-291
    • /
    • 2013
  • This study evaluated basic material properties of finishing mortar in ondol floor using NSB(Non-sinetering binder), and the binder for the purpose of the developing of high performance mortar and reducing crack problem without shrinkage-reduction agent.

  • PDF

Plastic Shrinkage and Durability Characteristics of Fiber Reinforced Polymer-Modified Mortars (섬유보강 폴리머 시멘트 모르타르의 초기수축균열 및 내구특성)

  • Won Jong Pil;Jang Pil Sung;Kim Myeong Kyun;Kong Tae Woong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.156-159
    • /
    • 2004
  • The intention of this study is to reduce the plastic shrinkage of the polymer modified cement mortar using the PVA fiber. The durability of PVA fiber reinforced polymer cement mortar was also evaluated. The test results of PVA fiber reinforced polymer modified cement mortar were compared with plain polymer modified cement mortar(non-fiber). In conclusion, PVA fiber reinforced polymer modified cement mortar showed an ability to reduce the total crack area and maximum crack width significantly. Also. fiber reinforced polymer modified cement mortar show improved durability performance.

  • PDF

An Experimental Study on the Performance of Bond-Type Anchorage Systems with Various Dimensions of Steel Mold (CFRP 긴장재용 부착형 정착 장치의 강관 몰드 제원에 따른 정착 성능 실험 연구)

  • Jung, Woo-Tai;Park, Young-Hwan;Park, Jong-Sup
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.257-264
    • /
    • 2011
  • This paper contains the experimental performance evaluation results of bond-type anchorage systems with the CFRP(carbon fiber reinforced polymer) tendon. The preliminary tests were performed to find the appropriate filling materials in the steel molds. A total of five materials including epoxy or cement mortar have been used as fillers in the steel molds. Results of the preliminary tests showed that specimen filled with non-shrinkage mortar showed maximum tensile strength. Based on the finding, the non-shrinkage mortar was selected as filler for anchoring CFRP tendons. Additional tests were performed as a parametric study to select proper size of steel molds such as external diameter, thickness, and length. The proper size of steel molds with non-shrinkage mortar was selected based on the test results, which gave stable tensile performance.

A Study on the Fluidity Properties and Strength Properties of Non-sintered Hwangtoh mixed with PVA Fiber (PVA섬유를 혼입한 비소성 황토 콘크리트의 유동특성 및 강도특성에 관한 연구)

  • Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.3
    • /
    • pp.49-56
    • /
    • 2010
  • The purpose of this study is to examine the effect of variations in the mix rate of PVA fiber and the replacement ratio of non-sintering Hwangtoh on non-sintering Hwangtoh mortar and concrete mixed with PVA fiber. For water to binder ratio, mortar and concrete were both 50%, and PVA fiber mix rate was 0% and 0.3%. The replacement ratio of non-sintering Hwangtoh was 0, 25, 50 and 75(%) for mortar, and 0, 15, 30 and 50(%) for concrete. The properties of the mortar and concrete were compared and analyzed in 4 different levels, and the results can be summarized as follows. The replacement ratio of 30% of the non-sintering Hwangtoh, and the PVA fiber mix rate of 0.3% is determined to result in concrete of high quality, including strength and fluidity, and crack control by plastic shrinkage.

Properties of High Impact Resisting Mortar based on Polyurethane (폴리우레탄계 고내충격성 모르타르의 물성치 연구)

  • Lee, Chin-Yong;Choi, Dong-Uk;Ha, Sang-Su;Kim, Dong-Wan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.645-648
    • /
    • 2008
  • The expansion joint is an important part of the bridge, but the failure is occurred on the non-shrinkage concrete which is connected to the slab of the bridge and the expansion joint, and the other problem is the release of anchors in expansion joint due to the impact and vibration during the driven car on the bridge, especially an overloaded car. In this study, to overcome the failure of non-shrinkage of concrete, high impact resisting mortar is developed. The high impact resisting mortar shall be a polyurethane material compounded with an aggregate system to develop excellent flexibility characteristics, high load bearing capacity.

  • PDF