• Title/Summary/Keyword: Non-rigidity

Search Result 106, Processing Time 0.022 seconds

A refined vibrational analysis of the FGM porous type beams resting on the silica aerogel substrate

  • Mohammad Khorasani;Luca Lampani;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.633-644
    • /
    • 2023
  • Taking a look at the previously published papers, it is revealed that there is a porosity index limitation (around 0.35) for the mechanical behavior analysis of the functionally graded porous (FGP) structures. Over mentioned magnitude of the porosity index, the elastic modulus falls below zero for some parts of the structure thickness. Therefore, the current paper is presented to analyze the vibrational behavior of the FGP Timoshenko beams (FGPTBs) using a novel refined formulation regardless of the porosity index magnitude. The silica aerogel foundation and various hydrothermal loadings are assumed as the source of external forces. To obtain the FGPTB's properties, the power law is hired, and employing Hamilton's principle in conjunction with Navier's solution method, the governing equations are extracted and solved. In the end, the impact of the various variables as different beam materials, elastic foundation parameters, and porosity index is captured and displayed. It is revealed that changing hygrothermal loading from non-linear toward uniform configuration results in non-dimensional frequency and stiffness pushing up. Also, Al - Al2O3 as the material composition of the beam and the porosity presence with the O pattern, provide more rigidity in comparison with using other materials and other types of porosity dispersion. The presented computational model in this paper hopes to help add more accuracy to the structures' analysis in high-tech industries.

A Study on the Characteristic Analysis of a Tilting Index Table for Machine Tools (공작기계 틸팅 인덱스 테이블의 특성 해석에 관한 연구)

  • Choi, Chi-Hyuk;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.7-12
    • /
    • 2011
  • In the recent field of 5-axis machine tools, it is necessary to improve machining ability. The tilting index table is a key unit in order to manufacture some non-rotational and 3-dimensional parts by using conventional machining centers. In this study, the structural analysis of a tilting index table is carried out and the displacement and distribution of stress in the tilting index table is analysed to design the table safely. The modal analysis is performed in order to confirm the frequency response about the vibration having a large effect on the machine tools. The dynamic analysis is performed in order to confirm the rigidity, and the structural stability has been verified.

Soil-structure interaction analysis of beams resting on multilayered geosynthetic-reinforced soil

  • Deb, Kousik
    • Interaction and multiscale mechanics
    • /
    • v.5 no.4
    • /
    • pp.369-383
    • /
    • 2012
  • In this paper, soil-structure interaction analysis has been presented for beams resting on multilayered geosynthetic-reinforced granular fill-soft soil system. The soft soil and geosynthetic reinforcements are idealized as nonlinear springs and elastic membranes, respectively. The governing differential equations are solved by finite difference technique and the results are presented in non-dimensional form. It is observed from the study that use of geosynthetic reinforcement is not very effective for maximum settlement reduction in case of very rigid beam. Similarly the reinforcements are not effective for shear force reduction if the granular fill has very high shear modulus value. However, multilayered reinforced system is very effective for bending moment and differential settlement reduction.

Strength Evaluation of CFRP Hat-shaped Sectional Members Due to Variation of Collapse Conditions Under Hygrothermal Environment (고온.고습 환경하에서의 압궤조건 변화에 따른 CFRP 모자형 단면부재의 강도평가)

  • Yang, Yong-Jun;Yang, In-Young;Sim, Jae-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.7-14
    • /
    • 2012
  • CFRP composite material has the superior specific strength and rigidity compared to metallic materials, and is widely adopted in the various fields. However, CFRP composite material has the weakness in hygrothermal and crash environment. Especially, moisture ingress into composite material under hygrothermal environment can change molecule arrangement and chemical properties. In addition, interface characteristics and material component properties can be degraded. A collapse experiment has been made to research the differences of absorbed energy and deformation mode between absorbed specimens of moisture and non-moisture. As a result of this study, the effect of moisture absorption and impact loads of about 30~50% reduction in strength are shown.

The Extraction of Co-PET from Non-Woven Fabrics of Nylon/Co-PET Sea-island Type Composite Microfiber

  • Park, Myung-Soo;Yoon, Jong-Ho;Cho, Dae-Hyun
    • Fashion & Textile Research Journal
    • /
    • v.3 no.5
    • /
    • pp.466-472
    • /
    • 2001
  • To find a suitable condition in this process examined, we investigated the main control factors, such as, the NaOH concentrations, such as, the NaOH concentrations, the heat treating times, and the heating temperatures. The resulting mechanical properties of the fabrics also studied. The samples used were Nylon/Co-PET sea-island type composite microfiber (Co-PET content: 35%) non-woven fabric. The conclusions obtained were as follows. 1. For the complete extraction of Co-PET from the sample non-woven fabric in the dry hot air process, $160^{\circ}C$ of air temperature, 15 min. of treatment time, and around 30% of NaOH concentration were required. On the other hand, in the wet hot air process, $140^{\circ}C$ of air temperature, 3.5 min. of treatment time, and around 30% of NaOH concentration were required. 2. The mechanical properties of the continuous processed samples showed that the WT, B, and WC increased with increasing the weight reduction ratio. However, the G, decreased with increasing the weight loss ratio. Note that, particularly in B, it increased drastically when the weight deduction ratios exceeded 30%. 3. As increasing the wet hot air temperature from 130 to $140^{\circ}C$, B appeared to increase, however, WT, G, and WC appeared to decrease. 4. The best condition found in this continuous process to extract Co-PET is the wet hot air temperature of 140, NaOH concentration of 28% or above, and the treatment time 2-4 min.

  • PDF

The Effect of Seat Incline Angle in Hemiplegic Patients' Standing up Training

  • Sim, Woo Sang;Jung, Kwang Tae;Won, Byeong Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.493-501
    • /
    • 2016
  • Objective: This study analyzes the effect of angle conditions of rehabilitation equipment used for supporting hemiplegic patients on their rehabilitation training for standing action. The study was performed by adjusting the rear angle of seat inclination through a motion analysis. Background: Owing to a loss of muscle rigidity and degradation of muscle control ability, hemiplegic stroke patients suffer from asymmetrical posture, abnormal body balance, and degraded balance abilities due to poor weight-shifting capacity. The ability to shift and maintain one's weight is extremely essential for mobility, which plays an important role in our daily life. Thus, to improve patients' ability to maintain weight evenly and move normally, they need to undergo orthostatic and ambulatory training. Method: Using a motion analysis system, knee movements on both hemiplegic side and non-hemiplegic side were measured and analyzed in five angles ($0^{\circ}$, $10^{\circ}$, $30^{\circ}$, $50^{\circ}$, $70^{\circ}$) while supported by the sit-to-stand rehabilitation equipment. Results: The knee movements on both sides increased as the angle increased in angle support interval to support a hemiplegic patient's standing up position. In standing up interval, a hemiplegic patient's knee movement deviations on both sides decreased, and the movement differences between hemiplegic and non-hemiplegic legs also decreased as the angle increased. Conclusion: The results of this study showed that the rehabilitation effectiveness increases as the angle increases, leading to a balanced standing posture through the decrease of movement difference between hemiplegic and non-hemiplegic sides and an improved standing up ability through the increase of knee movement on both sides. However, angles higher than $50^{\circ}$ didn't provide a significant effect. Therefore, a support angle under $50^{\circ}$ was proposed in this study. Application: The results of this study are expected to be applicable to the design of sit-to-stand support equipment to improve the effectiveness of the rehabilitation process of hemiplegic patients.

Design and Analysis of UHF-GPS Antenna for Autonomous Underwater Vehicles (자율무인잠수정용 UHF-GPS 안테나 설계 및 해석)

  • Sang-Jin Park;Yeong-Jun Jo;Dong-Hyun Seo;Lin-Keun Park
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.464-473
    • /
    • 2022
  • In this paper, about a lightweight design that satisfies the performance of UHF-GPS Antenna used in autonomous underwater vehicle is proposed. Structural analysis, watertight external pressure test and non-destructive testing used in the design process are decided in consideration of structural safety for operating external forces in the underwater environment. First, the material of radome is selected for the performance of the UHF-GPS Antenna for communication with the carrier on the underwater operation in consideration of the 20 bar pressure generated. And the material of radome as PA-GF is selected by conducting electromagnetic field analysis and structural analysis and by considering high strength, rigidity and high dielectric constant. Electromagnetic field analysis and structural analysis by the thickness of radome are additionally performed in order to satisfy the required weight of UHF-GPS antenna. After selecting the final model, its structural safety is verified through watertight external pressure test and non-destructive testing.

A Case Report of Non-Motor Symptoms Evaluated Using the Non-Motor Symptom Scale in a Patient with Secondary Parkinsonism Presumed to be Probable Lewy Body Dementia and Improved with Combined Treatment with Herbal Medicine and Acupuncture (루이소체 치매로 추정되는 이차성 파킨슨증 환자의 Non-Motor Symptom Scale(NMSS)로 평가한 비운동성 증상을 한약과 침의 복합치료로 호전시킨 증례보고 1례)

  • Roh, Min-yeong;Lee, Ji-hyun;Han, Yang-hee;Leem, Jung-tae
    • The Journal of Internal Korean Medicine
    • /
    • v.42 no.5
    • /
    • pp.833-845
    • /
    • 2021
  • Parkinson's syndrome is a degenerative brain disease that presents characteristic motor symptoms of tremor, rigidity, and gait disturbance. In addition to these motor symptoms, Parkinson's syndrome also presents non-motor symptoms (NMSs) such as sleep disturbance and cognitive decline. NMSs reduce patient's quality of life and psychosocial functioning and cause economic burden on the patient, so appropriate evaluation and treatment are required. Lewy body dementia is one of the several diseases belonging to Parkinson's syndrome. Its symptoms such as cognitive function, memory impairment, and hallucinations occur with Parkinsonism. Although drug therapy is being used with drug treatment to treat non-motor symptoms, it has limitations such as side effects, which stimulated interest in other complementary treatment methods such as oriental medicine treatment, dance, and yoga. The patient in this case complained of tremor in the right upper extremity, muscle hypertension and pain, and persistent vision, memory, and cognitive decline. The patient was diagnosed with probable Lewy body dementia. The patient was hospitalized for 4 months and received acupuncture and herbal medicines. After treatment, the patient's NMS scale scores decreased from 90 to 63, and the Unified Parkinson's Disease Rating Scale scores (summed I, II, and III) decreased from 17 points to 8 points. The Beck Depression Inventory score decreased from 22 points to 13 points. In addition, the patient's subjective evaluation revealed improvement. In this case, a patient diagnosed with probable Lewy body dementia who did not respond to the standard treatment and did not want to take medications showed improvement in not only motor symptoms but also NMSs after integrative Korean medicine treatment.

Effect of residual stress and geometric imperfection on the strength of steel box girders

  • Jo, Eun-Ji;Vu, Quang-Viet;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.423-440
    • /
    • 2020
  • In the recent years, steel box girder bridges have been extensively used due to high bending stiffness, torsional rigidity, and rapid construction. Therefore, researches related to this girder bridge have been widely conducted. This paper investigates the effect of residual stresses and geometric imperfections on the load-carrying capacity of steel box girder bridges spanning 30 m and 50 m. A three - dimensional finite element model of the steel box girder with a closed section was developed and analyzed using ABAQUS software. Nonlinear inelastic analysis was used to capture the actual response of the girder bridge accurately. Based on the results of analyses, the superimposed mode of webs and flanges was recommended for considering the influence of initial geometric imperfections of the steel box model. In addition, 4% and 16% strength reduction rates on the load - carrying capacity of the perfect structural system were respectively recommended for the girders with compact and non-compact sections, whose designs satisfy the requirements specified in AASHTO LRFD standard. As a consequence, the research results would help designers eliminate the complexity in modeling residual stresses and geometric imperfections when designing the steel box girder bridge.

Organ Shape Modeling Based on the Laplacian Deformation Framework for Surface-Based Morphometry Studies

  • Kim, Jae-Il;Park, Jin-Ah
    • Journal of Computing Science and Engineering
    • /
    • v.6 no.3
    • /
    • pp.219-226
    • /
    • 2012
  • Recently, shape analysis of human organs has achieved much attention, owing to its potential to localize structural abnormalities. For a group-wise shape analysis, it is important to accurately restore the shape of a target structure in each subject and to build the inter-subject shape correspondences. To accomplish this, we propose a shape modeling method based on the Laplacian deformation framework. We deform a template model of a target structure in the segmented images while restoring subject-specific shape features by using Laplacian surface representation. In order to build the inter-subject shape correspondences, we implemented the progressive weighting scheme for adaptively controlling the rigidity parameter of the deformable model. This weighting scheme helps to preserve the relative distance between each point in the template model as much as possible during model deformation. This area-preserving deformation allows each point of the template model to be located at an anatomically consistent position in the target structure. Another advantage of our method is its application to human organs of non-spherical topology. We present the experiments for evaluating the robustness of shape modeling against large variations in shape and size with the synthetic sets of the second cervical vertebrae (C2), which has a complex shape with holes.