• Title/Summary/Keyword: Non-preemptive

Search Result 71, Processing Time 0.029 seconds

Development of the High Reliable Safety PLC for the Nuclear Power Plants (고신뢰도 안전등급 제어기기 개발)

  • Son, Kwang-Seop;Kim, Dong-Hoon;Son, Choul-Woong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.109-119
    • /
    • 2013
  • This paper presents the design of the Safety Programmable Logic Controller (SPLC) used in the Nuclear Power Plants, an analysis of a reliability for the SPLC using a markov model. The architecture of the SPLC is designed to have the multiple modular redundancy composed of the Dual Modular Redundancy(DMR) and the Triple Modular Redundancy(TMR). The operating system of the SPLC is designed to have the non-preemptive state based scheduler and the supervisory task managing the sequential scheduling, timing of tasks, diagnostic and security. The data communication of the SPLC is designed to have the deterministic state based protocol, and is designed to satisfy the effective transmission capacity of 20Mbps. Using Markov model, the reliability of SPLC is analyzed, and assessed. To have the reasonable reliability such as the mean time to failure (MTTF) more than 10,000 hours, the failure rate of each SPLC module should be less than $2{\times}10^{-5}$/hour. When the fault coverage factor (FCF) is increased by 0.1, the MTTF is improved by about 4 months, thus to enhance the MTTF effectively, it is needed that the diagnostic ability of each SPLC module should be strengthened. Also as the result of comparison the SPLC and the existing safety grade PLCs, the reliability and MTTF of SPLC is up to 1.6-times and up to 22,000 hours better than the existing PLCs.

An Energy-Efficient Hybrid Scheduling Technique for Real-time and Non-real-time Tasks in a Sensor Node (센서 노드에서 에너지 효율적인 실시간 및 비실시간 태스크의 혼합 스케줄링 기법)

  • Tak, Sung-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1820-1831
    • /
    • 2011
  • When both types of periodic and aperiodic tasks are required to run on a sensor node platform with limited energy resources, we propose an energy-efficient hybrid task scheduling technique that guarantees the deadlines of real-time tasks and provides non-real-time tasks with good average response time. The proposed hybrid task scheduling technique achieved better performance than existing EDF-based DVS scheduling techniques available in the literature, the FIFO-based TinyOS scheduling technique, and the task-clustering based non-preemptive real-time scheduling technique.

eMCCA: An Enhanced Mesh Coordinated Channel Access Mechanism for IEEE 802.11s Wireless Mesh Networks

  • Islam, Md. Shariful;Alam, Muhammad Mahbub;Hong, Choong-Seon;Lee, Sung-Won
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.639-654
    • /
    • 2011
  • In this paper, we present a channel access mechanism, referred to as the enhanced mesh coordinated channel access (eMCCA) mechanism, for IEEE 802.11s-based wireless mesh networks. The current draft of IEEE 802.11s includes an optional medium access control (MAC), denoted as MCCA, which is designed to provide collision-free and guaranteed channel access during reserved periods. However, the MCCA mechanism fails to achieve the desired goal in the presence of contending non-MCCA nodes; this is because non-MCCA nodes are not aware of MCCA reservations and have equal access opportunities during reserved periods. We first present a probabilistic analysis that reveals the extent to which the performance of MCCA may be affected by contending non-MCCA nodes. We then propose eMCCA, which allows MCCA-enabled nodes to enjoy collision-free and guaranteed channel access during reserved periods by means of prioritized and preemptive access mechanisms. Finally, we evaluate the performance of eMCCA through extensive simulations under different network scenarios. The simulation results indicate that eMCCA outperforms other mechanisms in terms of success rate, network throughput, end-to-end delay, packet-loss rate, and mesh coordinated channel access opportunity-utilization.

Development of an Extended EDS Algorithm for CAN-based Real-Time System (CAN기반 실시간 시스템을 위한 확장된 EDS 알고리즘 개발)

  • Lee, Byong-Hoon;Kim, Dae-Won;Kim, Hong-Ryeol
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2369-2373
    • /
    • 2001
  • Usually the static scheduling algorithms such as DMS (Deadline Monotonic Scheduling) or RMS(Rate Monotonic Scheduling) are used for CAN scheduling due to its ease with implementation. However, due to their inherently low utilization of network media, some dynamic scheduling approaches have been studied to enhance the utilization. In case of dynamic scheduling algorithms, two considerations are needed. The one is a priority inversion due to rough deadline encoding into stricted arbitration fields of CAN. The other is an arbitration delay due to the non-preemptive feature of CAN. In this paper, an extended algorithm is proposed from an existing EDS(Earliest Deadline Scheduling) approach of CAN scheduling algorithm haying a solution to the priority inversion. In the proposed algorithm, the available bandwidth of network media can be checked dynamically by all nodes. Through the algorithm, arbitration delay causing the miss of their deadline can be avoided in advance. Also non real-time messages can be processed with their bandwidth allocation. The proposed algorithm can achieve full network utilization and enhance aperiodic responsiveness, still guaranteeing the transmission of periodic messages.

  • PDF

A Study on Development of Flood Vulnerability Evaluation Indicators for Sewage Treatment Plant (환경시설물 대상 홍수취약성 평가지표 개발에 관한 연구 - 하수처리장을 중심으로 -)

  • Roh, Jae-Deok;Han, Ji-Hee;Lee, Chang-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.12
    • /
    • pp.110-118
    • /
    • 2020
  • This study developed a evaluation indicators on environmental facilities highly vulnerable to flood damage from quantitative and qualitative perspectives in order to reinforce the ability or preemptive disaster prevention. At first, this study classified the facilities into structural factor and non-structural factor. The structural factor consists of 11 indicators, the non-structural factor consists of 8 internal indicators and 6 external indicators. This study is expected to be prepared for flood damage by evaluating flood vulnerability of environmental facilities.

Real time predictive analytic system design and implementation using Bigdata-log (빅데이터 로그를 이용한 실시간 예측분석시스템 설계 및 구현)

  • Lee, Sang-jun;Lee, Dong-hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.6
    • /
    • pp.1399-1410
    • /
    • 2015
  • Gartner is requiring companies to considerably change their survival paradigms insisting that companies need to understand and provide again the upcoming era of data competition. With the revealing of successful business cases through statistic algorithm-based predictive analytics, also, the conversion into preemptive countermeasure through predictive analysis from follow-up action through data analysis in the past is becoming a necessity of leading enterprises. This trend is influencing security analysis and log analysis and in reality, the cases regarding the application of the big data analysis framework to large-scale log analysis and intelligent and long-term security analysis are being reported file by file. But all the functions and techniques required for a big data log analysis system cannot be accommodated in a Hadoop-based big data platform, so independent platform-based big data log analysis products are still being provided to the market. This paper aims to suggest a framework, which is equipped with a real-time and non-real-time predictive analysis engine for these independent big data log analysis systems and can cope with cyber attack preemptively.

Design and Implementation of Preemptive EDF Scheduling Algorithm in TinyOS (TinyOS에서의 선점적 EDF 스케줄링 알고리즘 설계 및 구현)

  • Yoo, Jong-Sun;Kim, Byung-Kon;Choi, Byoung-Kyu;Heu, Shin
    • The KIPS Transactions:PartA
    • /
    • v.18A no.6
    • /
    • pp.255-264
    • /
    • 2011
  • A sensor network is a special network that makes physical data sensed by sensor nodes and manages the data. The sensor network is a technology that can apply to many parts of field. It is very important to transmit the data to a user at real-time. The core of the sensor network is a sensor node and small operating system that works in the node. TinyOS developed by UC Berkeley is a sensor network operating system that used many parts of field. It is event-driven and component-based operating system. Basically, it uses non-preemptive scheduler. If an urgent task needs to be executed right away while another task is running, the urgent one must wait until another one is finished. Because of that property, it is hard to guarantee real-time requirement in TinyOS. According to recent study, Priority Level Scheduler, which can let one task preempt another task, was proposed in order to have fast response in TinyOS. It has restrictively 5 priorities, so a higher priority task can preempt a lower priority task. Therefore, this paper suggests Preemptive EDF(Earliest Deadline First) Scheduler that guarantees a real-time requirement and reduces average respond time of user tasks in TinyOS.

A Study on Real Time and Non-real Time Traffic Multiplexing with Congestion Control (폭주제어를 포함한 실시간 및 비실시간 트래픽의 다중화에 관한 연구)

  • 송관호;이재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.4
    • /
    • pp.750-760
    • /
    • 1994
  • In this paper we proposed a multiplexing scheme of real time and non-real traffics in which a congestion control is embedded. Real time traffics are assumed to be nonqueuable and have preemptive priority over non-real time traffics in seizing the common output link, whereas the non-real time traffics wait in the common buffer if the output link is not available for transmission. Real time traffics are encoded according to the bandwidth reduction strategy, paticularly when congestion occurs among non-real time traffics. This scheme provides us an efficient way for utilizing the costly bandwidth resources, by accommodation as many real time traffics as possible with gauranteeing its mimimum bandwidth requirements, and also resloving the congestion encountered among non-real time traffics. We describe the system as a Markov queueing system, provide the analysis by exploiting the matrix geometric method, and present the performance for various performance measures of interest. Some numerical results are also provided.

  • PDF

Evaluation of Applicability of APEX-Paddy Model based on Seasonal Forecast (계절예측 정보 기반 APEX-Paddy 모형 적용성 평가)

  • Cho, Jaepil;Choi, Soon-Kun;Hwang, Syewoon;Park, Jihoon
    • Journal of Korean Society of Rural Planning
    • /
    • v.24 no.4
    • /
    • pp.99-119
    • /
    • 2018
  • Unit load factor, which is used for the quantification of non-point pollution in watersheds, has the limitation that it does not reflect spatial characteristics of soil, topography and temporal change due to the interannual or seasonal variability of precipitation. Therefore, we developed the method to estimate a watershed-scale non-point pollutant load using seasonal forecast data that forecast changes of precipitation up to 6 months from present time for watershed-scale water quality management. To establish a preemptive countermeasure against non-point pollution sources, it is possible to consider the unstructured management plan which is possible over several months timescale. Notably, it is possible to apply various management methods such as control of sowing and irrigation timing, control of irrigation through water management, and control of fertilizer through fertilization management. In this study, APEX-Paddy model, which can consider the farming method in field scale, was applied to evaluate the applicability of seasonal forecast data. It was confirmed that the rainfall amount during the growing season is an essential factor in the non-point pollution pollutant load. The APEX-Paddy model for quantifying non-point pollution according to various farming methods in paddy fields simulated similarly the annual variation tendency of TN and TP pollutant loads in rice paddies but showed a tendency to underestimate load quantitatively.

Exploiting cognitive wireless nodes for priority-based data communication in terrestrial sensor networks

  • Bayrakdar, Muhammed Enes
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.36-45
    • /
    • 2020
  • A priority-based data communication approach, developed by employing cognitive radio capacity for sensor nodes in a wireless terrestrial sensor network (TSN), has been proposed. Data sensed by a sensor node-an unlicensed user-were prioritized, taking sensed data importance into account. For data of equal priority, a first come first serve algorithm was used. Non-preemptive priority scheduling was adopted, in order not to interrupt any ongoing transmissions. Licensed users used a nonpersistent, slotted, carrier sense multiple access (CSMA) technique, while unlicensed sensor nodes used a nonpersistent CSMA technique for lossless data transmission, in an energy-restricted, TSN environment. Depending on the analytical model, the proposed wireless TSN environment was simulated using Riverbed software, and to analyze sensor network performance, delay, energy, and throughput parameters were examined. Evaluating the proposed approach showed that the average delay for sensed, high priority data was significantly reduced, indicating that maximum throughput had been achieved using wireless sensor nodes with cognitive radio capacity.