• Title/Summary/Keyword: Non-point source water pollution

Search Result 328, Processing Time 0.026 seconds

Estimation of Pollution Load in Anyang Stream Basin Using GIS (GIS를 이용한 안양천 유역의 오염부하량 산정)

  • 최종욱;유병태;이민환;김건흥
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.1-9
    • /
    • 1999
  • In the estimation of pollution load in water basin, a data information has generally used from surveyed data. A Geographic Information System(GIS) was adopted to evaluate the amount of pollution load in Anyang stream basin which is one of the major tributaries in the Han river flows through urban area. The digital maps of administrative boundary, stream network, sub-basin, soil type, and land-use for spatial data as well as attribute data were generated. And the database of sub-basins and pollution source was structured to estimate pollution load in Anyang stream basin by an Arc/Info GIS.As the results of this investigation, the pollution load of Mokgam-chun sub-basin was the highest amount. And that of Hagi-chun sub-basin and the fourth main stream sub-basin were also high amount in Anyang stream basin. In general, it was found that the pollution load generated from the upstream area in Kyunggi province was higher than that from downstream area in Seoul. Because the point and non-point source pollution load played very significant role in the deterioration of the water quality of the Anyang stream, an integrated approach to water quality management should be required for the sub-basins of high pollution load amount.

  • PDF

Temporal and Spatial Evaluation of Water Pollution Loads of the Tributaries in Gohyeon Stream Watershed (고현천 유입지류에 대한 오염부하량의 시.공간적 평가)

  • Kim, Sung Jae
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.607-628
    • /
    • 2012
  • The watershed of Gohyeon Stream was divided into the 10 sub-basins, and 19 sampling points were selected in their tributaries, which the characteristics of the water quality and pollution loads variance were investigated for during the rainy and dry seasons. The results of water quality analysis revealed that the upper watershed(T1~T8) of Gohyeon Stream had a feature of rural area, and its lower watershed(T9~T19) had a feature of the municipal area. The non-point pollution loads of the tributaries were estimated with 2,063, 601, 365, and 45 ton/yr of SS, COD, DIN, and DIP, respectively. The pollution loads of the parameters except DIP were generated about 60% during the rainy season, which suggested that a precipitation significantly influenced on the discharge of non-point source pollution. Meanwhile, the non-point pollution load of DIP was generated about 60% during the ordinary and dry seasons, which suggested that control of a phosphorus pollution source was significantly required during these seasons. Pearson's correlation analysis revealed that SS pollution source of the upper watershed was definitely different from that of the lower watershed, that is, the pollution load from the upper watershed was mainly caused by the discharge of SS due to soil erosion in the farmland and forest land during the rainy season, and that of the lower watershed by the discharge of sewage and municipal run-off.

Systematic Review on Management of Livestock wastes for Improving Water Quality (수질개선을 위한 축산계 오염물질 관리방안에 대한 고찰)

  • Ahn, Ki Hong;Ryu, Hong Deok;Kim, Yong Seok
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.576-582
    • /
    • 2015
  • In recently, the Korea government is concerning on non-point source pollution management to improve water quality. The objective of this paper is to investigate the improvement measurement for management of livestock wastes. As a result, we find that the National Pollution Source Survey is necessary to establish the unified database system with the Korea Statistics(KOSAT) in order to minimize the difference between relevant data. The investigation for environmental impact of livestock manure should be supported the designation of control areas and establishment of the technical guidelines including target material, monitoring site, standard method, etc. In addition, it should be followed by appropriate nutrient recycling and proper fertilizer usage based on social consultation and cost-benefit analysis.

Watershed Selection for Diffuse Pollution Management Based on Flow Regime Alteration and Water Quality Variation Analysis (유황분석과 수질변화 평가를 통한 비점오염원 관리대상지역 선정방법 연구)

  • Jung, Woohyeuk;Yi, Sangjin;Kim, Geonha;Jeong, Sangman
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.228-234
    • /
    • 2011
  • The goal of water quality management on stream and watershed is to focus not on discharged loads management but on a water quality management. Discharged loads management is not goal of water quality management but way for perform with total maximum daily loads management. It is necessary to estimate the relation between non-point source with stromwater runoff (NPSSR) and water quality to select a watershed where it is required to manage NPSSR for water quality improvement. To evaluate the effects of NPSSR on stream's water quality, we compare the aspects of water quality in dry and wet seasons using flow duration curve analysis based on flow rate variation data by actual surveying. In this study we attempt to quantify the variation characteristic of water quality and estimate the Inflow characteristic of pollution source with water quality and flow rate monitoring on 10 watersheds. We try to estimate water quality and flow rate by regression analysis and try again regression analysis with each high and low water quality data more than estimations. An analysis of relation between water quality and flow rate of 10 watersheds shows that the water quality of the Nonsan and the Ganggyeong streams had been polluted by NPSSR pollutants. Other eight streams were important point source more than NPSSR. It is wide variation range of $BOD_5$ also high average concentration of $BOD_5$. We have to quantify water quality variation by cv1 in wet season and cv365 in dry season with comparing the estimate of high water quality and low water quality. This method can be used to indicator for water quality variation according to flow rate.

Assessing Impact of Non-Point Source Pollution by Management Alternatives on Arable Land using AGNPS Model (AGNPS 모형을 이용한 농경지 관리대안에 따른 비점오염 저감효과 분석)

  • Lee, Eun-Jeong;Kim, Hak-Kwan;Park, Seung-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1008-1013
    • /
    • 2007
  • The objectives of the paper were to identify appropriate best management practices (BMPs) for reducing nonpoint source (NPS) pollutant loadings and to simulate the effects of the application of the several BMP scenarios on the study watershed using Agricultural Nonpoint Source (AGNPS) model. AGNPS model was calibrated and validated for runoff, sediment yield, and nutrient components using the observed hydrologic and water quality data. The simulated runoff, sediment, and nutrient components were well agreed with observed data. The validated AGNPS was applied to estimate the NPS pollution removal efficiency for BMP scenarios which were selected considering the pollutant characteristics of the study watershed.

  • PDF

Selecting Target Sites for Non-point Source Pollution Management Using Analytic Hierarchy Process (계층분석적 의사결정기법을 이용한 비점원오염 관리지역의 선정)

  • Shin, Jung-Bum;Park, Seung-Woo;Kim, Hak-Kwan;Choi, Ra-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.3
    • /
    • pp.79-88
    • /
    • 2007
  • This paper suggests a hierarchial method to select the target sites for the nonpoint source pollution management considering factors which reflect the interrelationships of significant outflow characteristics of nonpoint source pollution at given sites. The factors consist of land slope, delivery distance to the outlet, effective rainfall, impervious area ratio and soil loss. The weight of each factor was calculated by an analytic hierarchy process(AHP) algorithm and the resulting influencing index was defined from the sum of the product of each factor and its computed weight value. The higher index reflect the proposed target sites for nonpoint source pollution management. The proposed method was applied to the Baran HP#6 watershed, located southwest from Suwon city. The Agricultural Nonpoint Pollution Source(AGNPS) model was also applied to identify sites contributing significantly to the nonpoint source pollution loads from the watershed. The spatial correlation between the two results for sites was analyzed using Moran's I values. The I values were $0.38{\sim}0.45$ for total nitrogen(T-N), and $0.15{\sim}0.22$ for total phosphorus(T-P), respectively. The results showed that two independent estimates for sites within the test water-shed were highly correlated, and that the proposed hierarchial method may be applied to select the target sites for nonpoint source pollution management.

Analysis of Non-point Source Pollution using GIS Technique (GIS를 이용한 충주호주변의 비점원 오염 분석 연구)

  • 김윤종;유일현;김원영;류주영;이영훈;민경덕
    • Spatial Information Research
    • /
    • v.3 no.1
    • /
    • pp.1-18
    • /
    • 1995
  • Despite the widespread use of GIS over the past ten years, it has been limited application for regional modeling of pollutant loadings such as sediment, nitrogen, and phosphorus(non-point source pollution), The goals of this study were to: select important processes and parameters of watersheds that contribute to non-point source pollution degradation, develop a ranking model to use the environmental geologic data and verify the model by comparing results with existing water quality data(Chung-ju Lake) for specific watersheds, The GIS database consisted of topography, geology, soils, precipitation, rainfall erosivity, land use, and watershed boundaries. The index(NPSP) for assessing non-point source pollution was comprised in the following three seperate components: soil loss index(SLI) assesses the potential soil erosion and sedim-ent delivery from field to stream; run-off potential ratio(R.P.R) predicts the potential production of surface runoff; chloropgyll-a index ranks the potential manure(animal or human) production within a watershed. The GIS model was a valuable tool to assess the impact of environmental pollation in watersheds.

  • PDF

Estimation of Pollutants Loading from Non-Point Sources Based on Rainfall Event and Land use Characteristics (강우강도와 토지이용을 고려한 비점오염물질 부하량 산정에 관한 연구)

  • Lee, Hye-Won;Choi, Nam-Hee;Lee, Yong-Seok;Choi, Jung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.8
    • /
    • pp.572-577
    • /
    • 2011
  • The unit load has simply been used to estimate total pollutant loading from non-point sources, however, it does not count on the variable pollutant loading according to land use characteristics and rainfall intensity. Since pollutant emission from the watershed is strongly dependent on the rainfall intensity, it is necessary to find out the relationship between pollutant loading and rainfall intensity. The objective of this study is to develop simple and easy method to compute non-point source pollution loads with consideration of rainfall intensity. Two non-point source removal facility at Gyeongan-dong (Gwangju-si) and Mohyeon-myeon (Yongin-si), Gyeonggi-do was selected to monitor total rainfall, rainfall intensity, runoff characteristics and water quality from June to November, 2010. Most of Event Mean Concentrations (EMC) of measured water quality data were higher in Gyeongan which has urban land use than in Mohyeon which has rural land use. For the case of TP (Total Phosphorus), Mohyeon has higher values by the influence of larger chemical uses such as fertilizer. The relationship between non-point source pollution load and rainfall intensity is perfectly well explained by cubic regression with 0.33~0.81 coefficients of determination($R^2$). It is expected that the pollution loading function based on the long-term monitoring would be very useful with good accuracy in computing non-point source pollution load, where a rainfall intensity is highly variable.

Characteristics of Non-point Pollutants from the Road Runoff (1): Water Quality (도로노면 유출수의 비점오염원 배출 특성(1): 기본 수질 항목)

  • Park, Sangwoo;Oh, Jeill;Choi, Younghwa;Seo, Jeongwoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.225-233
    • /
    • 2007
  • Road runoff water is one of the non-point sources (NPSs) of pollution negatively influencing drinking water source. Numerous road runoff NPS waters have been studied for over the last decade. However, the sources of pollution can be conditional, seasonal, or accidental. Therefore, measurement of pollutant loadings in different site is necessary to estimate the effect of road runoff water. The objective of this study was to examine the quality of road runoff water from a city bridge in Seoul, Korea. This study was conducted for two years to assess annual discharge pollution loads. In this study, key water quality parameters including chemical oxygen demand ($COD_{Cr}$), biochemcial oxygen demand ($BOD_5$), total nitrogen (T-N), total phosphorus (T-P), and suspended solid (SS) were measured at 18 different events. The results showed that typically the pollutant concentrations are higher at the beginning of each event and decrease afterwards. The first 20% of the volume of the runoff from each event is transporting 46% ($COD_{Cr}$), 48% ($BOD_5$), 50% (T-N), 34% (T-P), 30% (SS), respectively. The event mean concentrations (EMCs) were $COD_{Cr}$ (199 mg/L), $BOD_5$ (41.2 mg/L), T-N (7.97 mg/L), T-P (0.42 mg/L) and SS (113 mg/L). Although the results were consistent with the previous study (Barbosa and Hvitved-Jacobsen, 1999), $COD_{Cr}$, $BOD_5$, T-N exhibit a stronger first flush effect compared to the other contaminants.

A Study of Design Conditions for Decision Area of Constructed Wetland to treat Nonpoint Source Pollution from Agricultural Area (농촌유역 비점오염원처리를 위한 적정 인공습지 규모결정에 관한 연구(지역환경 \circled1))

  • 장정렬;박종민;권순국;윤경섭
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.490-499
    • /
    • 2000
  • Several studies on development of water quality treatment systems by wetlands are on going because of their benefits of low construction cost and high efficiency of waste water treatment. The objectives of this study were to review the necessary contents of survey and design factors for constructing constructed wetlands and to examine the required wetland area to treat non-point source pollution through case studies. The measurement of water quality and quantity in precipitation period is needed to analyse the inflow characteristics of the non-point pollution and to determine the amount of design flow. The design inflow for constructing constructed wetland was determined to the total runoff from 30mm of daily rainfall in the AMC(III) condition of the SCS method and is similar 70% of the annual mean runoff. The natural type wetland system with 0.1m of water depth and 5 hours of detention time was applied. From the results of the case studies, 70% of inflow could be treated and 1∼3% of wetland area of the total basin is needed.

  • PDF