• Title/Summary/Keyword: Non-point source pollution management

Search Result 183, Processing Time 0.03 seconds

Application of a Watershed-Based Land Prioritization Model for the Protection of Drinking Water Reservoir (상수원 보호를 위한 유역기반 토지관리 우선순위 모델 적용)

  • Lee, Jee Hyun;Choi, Ji Yang;Park, Seok Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.397-408
    • /
    • 2004
  • Due to the growing impact of non-point source pollution and limitation of water treatment technology, a new policy of water quality management, called a source protection, is now becoming more important in drinking water supply. The source protection means that the public agency purchases the pollution sensitive area, such as riparian zone, and prohibit locations of point and non-point sources. Many studies have reported that this new policy is more economical in drinking water supply than the conventional one. However, it is very difficult to determine location and size of the pollution sensitive zone in the watershed. In this paper, we presented the scientific criteria for the priority of the pollution sensitive zone, along with a case study of the upstream watershed of the Paldang Reservoir, Han River. This study includes applications of the analytical hierarchy process(AHP) and a watershed-based land prioritization(WLP) model. After major criteria affecting water quality were selected, the AHP and geographic analysis were performed. The WLP model allowed us to include both quantity and quality criteria, using AHP as the multi-criteria method in making decision and reflecting local characteristics and various needs. By adding a travel-time function, which represents the prototype effectively, the results secured adaptability and scientific objectivity as well. As such, the WLP model appeared to provide reasonable criteria in determining the prioritization of land acquisition. If the tested data are used with a validated travel-time and AHP method is applied after further discussion among experts in such field, highly reliable results can be obtained.

Analysis of Factors Affecting Retention Time in Grassed Swale (식생수로에서 유하시간에 영향을 주는 인자 분석)

  • Paek, Seoungbong;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.303-310
    • /
    • 2015
  • Recently the water quality management policy gives priority to management the point source. Point pollution sources have definite emission points and are discharged to one point through a pipe. But Nonpoint pollution source (NPS) has uncertain pathway, pollutant load and runoff characteristics unlike point pollution sources, making them difficult to manage. Thus, the Korea government plans to develop and equip facilities that help reduce NPS so as to manage them more easily. But removal efficiency of Best Management Practice (BMPs) is in influenced by rainfall, hydrologic condition like natural phenomenon, so factors of removal efficiency are difficult. Thus there is a need for multilateral research about many factors that affect removal efficiency for removal facility design of proper non-point pollution. In this research, mapping, vegetation coverage and retention time were investigated in the case of factors that affect removal efficiency in grassed swale, a nature-type non-point removal facility. Grassed swale obtained changed of coverage using Braun-Blanquet within swale and retention time was obtained from point that rainfall effluent enters into swale to the time that first outflow starts. Besides, correlation analysis was obtained using pearson correlation analysis method. As a result, it was shown that removal efficiency increases as retention time is longer in grassed swale and that retention time increases as vegetation coverage is higher.

Watershed Selection for Diffuse Pollution Management Based on Flow Regime Alteration and Water Quality Variation Analysis (유황분석과 수질변화 평가를 통한 비점오염원 관리대상지역 선정방법 연구)

  • Jung, Woohyeuk;Yi, Sangjin;Kim, Geonha;Jeong, Sangman
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.228-234
    • /
    • 2011
  • The goal of water quality management on stream and watershed is to focus not on discharged loads management but on a water quality management. Discharged loads management is not goal of water quality management but way for perform with total maximum daily loads management. It is necessary to estimate the relation between non-point source with stromwater runoff (NPSSR) and water quality to select a watershed where it is required to manage NPSSR for water quality improvement. To evaluate the effects of NPSSR on stream's water quality, we compare the aspects of water quality in dry and wet seasons using flow duration curve analysis based on flow rate variation data by actual surveying. In this study we attempt to quantify the variation characteristic of water quality and estimate the Inflow characteristic of pollution source with water quality and flow rate monitoring on 10 watersheds. We try to estimate water quality and flow rate by regression analysis and try again regression analysis with each high and low water quality data more than estimations. An analysis of relation between water quality and flow rate of 10 watersheds shows that the water quality of the Nonsan and the Ganggyeong streams had been polluted by NPSSR pollutants. Other eight streams were important point source more than NPSSR. It is wide variation range of $BOD_5$ also high average concentration of $BOD_5$. We have to quantify water quality variation by cv1 in wet season and cv365 in dry season with comparing the estimate of high water quality and low water quality. This method can be used to indicator for water quality variation according to flow rate.

Comparative Analysis of Wastewater Management Technologies for Construction Sites (건설사업장의 수질관리 기술 적용사례 비교분석)

  • Yi, JongChan;Koo, Jakon
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.157-162
    • /
    • 2013
  • To deal with the water pollution arising from the construction site, this study raises the issues of management and laws and it suggest the efficient way to reduce water pollution by through the case studies. In order to study, seven cases were selected from "Construction Environmental Management Best Practice Competition" co - sponsored by Construction Association of Korea and Construction Environment Association. As a study result, there are problems that depending on the characteristic of the construction site environment simple alone settling facilities can not handle muddy and dirty water generated by the construction site. However, when the construction site applied improved water pollution control facilities with reflecting the characteristic of muddy and dirty water. The problem can be solved moreover it can achieve exceeded emission standard. Therefore new regulations and management with water pollution control facilities considering characteristic of environment is needed to cope with water pollution arising from the construction site.

Analysis of the Land Pollution Area Using Land Category Information (지목정보를 이용한 토지오염지역 분석)

  • Min, Kwan Sik;Kim, Hong Jin;Kim, Jae Myeong
    • Spatial Information Research
    • /
    • v.23 no.1
    • /
    • pp.33-40
    • /
    • 2015
  • Recently, land pollution makes various environment problems according to existing land use. So, there is an urgent need for management about these problems. This study categorize land pollution area using the land category information according to main land usage for reasonable analysis of land pollution area by point and non-point pollution sources. And also there was able to collect land pollution sources information efficiently by analysing the land category information. The land use information that categorized important factor for management and land pollution survey will be utilized Soil environment management and preservation. And land use information will be used land use regulation, resonable preservation and management.

Variations of the Pollutant Concentration by Explosive Demolition of a Building and Management Plan of Non-point Source Pollution (구조물의 해체 공정별 오염농도 변화 및 비점오염원 관리 방안)

  • Chu, Kyoung-Hoon;Yoo, Sung-Soo;Kim, Hyo-Jin;Lee, Kyoung-Hee;Ko, Kwang-Baik
    • Explosives and Blasting
    • /
    • v.29 no.1
    • /
    • pp.17-26
    • /
    • 2011
  • In this study, the pollutants contained in water and soil samples taken from the explosive demolition site were examined to investigate the effects on environment, and management plan of non-point source pollution in the demolition site was suggested through characterizing the movement of the pollutant with time. As results, pH value of the water and soil samples after the demolition work was 8.5~9.3 which exceeds the Korean environmental criterion of water and soil range due to calcium hydroxide compounds in the concrete. The concentration level of heavy metals caused by the explosive demolition doesn't exceed the environmental criterion of water and soil doesn't exceed the environmental criterion of water and soil quality, and the influence of water and soil pollution on the environment was not considered. The concentration of the heavy metals was analyzed and that of Cr, Cu, Zn and Hg among the heavy metals increased after the drilling and explosive demolition. This says that concentration of the heavy metals during explosive demolition works needs to be monitored. The most pollutants with time or rain dilution into the demolition site decreased and this means that the pollutants caused by the explosive demolition might have influenced to vicinity of the demolition sites as non-point pollution.

Analysis of Non-point Pollution Source Removal Efficiencies according to Rainfall Characteristics in Low Impact Development Facilities with Vegetation (식생이 적용된 비점오염 저감시설의 강우 특성에 따른 효율 분석)

  • Ku, Soo-Hwan;Im, Jiyeol;Oa, Seong-Wook;Gil, Kyungik
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.247-255
    • /
    • 2017
  • This research was conducted to analyze removal efficiencies of non-point pollution source (NPS) in low impact development (LID) facilities with vegetation. In this research, removal efficiencies of NPS were calculated using rainfall monitoring data for 5 years in grassed swale (GS) and vegetative filter strip (VFS). TSS was greater than other pollutants, and it ranged 11.9 ~ 351.7 mg/L in GS and 12.8 ~ 350.7 mg/L in VFS. Outflow EMCs were reduced than inflow EMCs, overall removal efficiencies of NPS were 67 ~ 86% in GS and 63 ~ 91% in VFS. 50 % reduction efficiency of rainfall runoff was observed between inflow and outflow in each LID facility. TSS removal efficiency in GS and VFS was correlated with rainfall characteristics. The rainfall for TSS removal efficiency over 50% was determined about 31 mm, 34 mm and average rainfall intensity was 3.0 mm/hr, 3.9 mm/hr in GS and VFS. Therefore, GS and VFS were regarded effective LID facilities as removal of pollutants and rainfall runoff. Also, this research result can be used as an important data for management of NPS.

A Study on Development of Management Targets and Evaluation of Target Achievement for Non-point Source Pollution Management in Saemangeum Watershed (새만금 비점오염원 관리지역에서의 목표설정 및 달성도 평가방법론 연구)

  • Kim, Eun-Jung;Park, Bae-Kyung;Kim, Yong-Seok;Rhew, Doug-Hee;Jung, Kwang-Wook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.8
    • /
    • pp.480-491
    • /
    • 2015
  • In this study, methods using LDC (Load Duration Curve) and watershed model were suggested to develope management targets and evaluate target achievement for non-point source pollution management considering watershed and runoff characteristics and possibility for achievement of target. These methods were applied for Saemangeum watershed which was designated as nonpoint source pollution management area recently. Flow duration interval of 5 to 40% was selected as flow range for management considering runoff characteristics and TP was selected as indicator for management. Management targets were developed based on scenarios for non-point source pollutant reduction of management priority areas using LDC method and HSPF model which was calibrated using 4 years data (2009~2012). In the scenario of LID, road sweeping and 50% reduction in CSOs and untreated sewage at Jeonju A20 and 30% reduction in fertilizer and 50% in livestock NPS at Mankyung C03, Dongjin A14 and KobuA14, management targets for Mangyung bridge, Dongjin bridge, Jeonju stream and Gunpo bridge were developed as TP 0.38, 0.18, 0.64 and 0.16 mg/L respectively. When TP loads at the target stations were assumed to have been reduced by a certain percentage (10%), management targets for those target stations were developed as TP 0.35, 0.17, 0.60 and 0.15 mg/L respectively. The result of this study is expected to be used as reference material for management master plan, implementation plan and implementation assessment for non-point source management area.

Estimation of Pollution Load in Anyang Stream Basin Using GIS (GIS를 이용한 안양천 유역의 오염부하량 산정)

  • 최종욱;유병태;이민환;김건흥
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.1-9
    • /
    • 1999
  • In the estimation of pollution load in water basin, a data information has generally used from surveyed data. A Geographic Information System(GIS) was adopted to evaluate the amount of pollution load in Anyang stream basin which is one of the major tributaries in the Han river flows through urban area. The digital maps of administrative boundary, stream network, sub-basin, soil type, and land-use for spatial data as well as attribute data were generated. And the database of sub-basins and pollution source was structured to estimate pollution load in Anyang stream basin by an Arc/Info GIS.As the results of this investigation, the pollution load of Mokgam-chun sub-basin was the highest amount. And that of Hagi-chun sub-basin and the fourth main stream sub-basin were also high amount in Anyang stream basin. In general, it was found that the pollution load generated from the upstream area in Kyunggi province was higher than that from downstream area in Seoul. Because the point and non-point source pollution load played very significant role in the deterioration of the water quality of the Anyang stream, an integrated approach to water quality management should be required for the sub-basins of high pollution load amount.

  • PDF

Determination of EMC and MFFn Rainfall Runoff in Songcheon, Doam Lake Watershed (도암호 유역 송천에서의 강우유출수 분석을 통한 EMC와 초기세척비율 (MFFn) 산정)

  • Kwon, Hyeokjoon;Kim, Jonggun;Lim, Kyoungjae;Kim, Dongjin;Hong, Eunmi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.4
    • /
    • pp.13-22
    • /
    • 2020
  • The Doam Lake watershed has a significant impact on the downstream water system due to nutrients and sediment outflow during rainfall caused by steep slopes, soil losses, and fertilization. These non-point sources are unclear in the discharge area and are affected by land use patterns, soil characteristics, and topographical features of the watershed. Therefore, this study conducted rainfall monitoring from July to October 2019 in Songcheon upstream of the Doam Lake watershed, one of the non-point pollution source management areas. Then, after analyzing rainfall runoff, Event Mean Concentration (EMC) and Mass First Flush ratio (MFFn) were calculated to compare and analyze the characteristics of rainfall and the non-point pollutant discharge. As a result of the analysis, it showed various non-point pollutant emission characteristics for each rainfall event. In addition, the concentration of EMC and the MFFn were affected by the average rainfall intensity and the maximum rainfall intensity, and were not significantly affected by the number of antecedent drying days. In the future, it is expected that effective non-point source reduction measures and management measures according to rainfall intensity through continuous monitoring and analysis will be needed.