• Title/Summary/Keyword: Non-point source pollution

Search Result 379, Processing Time 0.03 seconds

Dynamics of Total Phosphorus and Attached Bacteria in a Porous Medium Concentrating Nutrients from Low-Nutrient Water (저농도 영양염류를 농축하는 여재에서 총인과 부착세균의 변화)

  • Kim, Ju-Young;Nam, Jong-Hyun;Jung, Da-Woon;Cho, Ahn-Na;Choi, Seung-Ik;Ahn, Tae-Seok
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.133-139
    • /
    • 2009
  • A nutrient-concentrating system was operated to retrieve total phosphorus efficiently from a non-point pollution source. Attached bacteria were expected to play an important role in the system. Phosphorous was concentrated by formation of bacterial biofilms on rubberized coconut fiber media of the system. While concentration of total phosphorus (TP) ranged merely 0.12~0.35 mg/L in the stream water, TP levels in pore water and the media were 0.45~0.86 mg/L and 40.91~242.71 mg/kg, respectively. Total bacterial number (TBN) ranged $0.3\sim2.3\times10^6$ cells/ml in stream water, $0.4\sim4.4\times10^6$ cells/ml in pore water and $0.8\sim1.9\times10^9$ cells/g in media. There was a close correlation between TP and TBN. Based on band profiles in DGGE analyses, bacterial communities in the media were different from that in the stream water. Clostridium spp. were abundant in the stream water while Aquabacterium spp. were dominant species in early stages of biofilm formation in the media. The genera predominant in matured biofilms of the media were Clostridium and Enterococcus.

Water Quality Modelling of Flood Control Dam by HSPF and EFDC (HSPF-EFDC 모델을 연계한 홍수조절댐 수질 변화 예측)

  • Lee, Young-Gi;Hwang, Sang-Chul;Hwang, Hyun-Dong;Na, Jin-Young;Yu, Na-Young;Lee, Han-Jin
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.3
    • /
    • pp.251-266
    • /
    • 2018
  • This study predicted the effect of operation pattern of flood control dam on water quality. Flood control dam temporarily impound floodwaters and then release them under control to the river below the dam preventing the river ecosystem from the extreme flood. The Hydrological Simulation Program Fortran (HSPF) and the Environmental Fluid Dynamics Code (EFDC) were adapted to predict the water quality before and after the dam construction in the proposed reservoir. The non-point pollutant delivery load from the river basin was estimated using the HSPF, and the EFDC was used to predict the water quality using the provided watershed boundary conditions from the HSPF. As a result of water quality simulation, it is predicted that the water quality will be improved due to the decrease of pollution source due to submergence after dam construction and temporary storage during rainfall. There would be no major water quality issues such as the eutrophication in the reservoir since the dam would impound the floodwater for a short time (2~3 days). In the environmental impact assessment stage of a planned dam, there may be some limitations to the exact simulation because the model can not be sufficiently calibrated. However, if the reliability of the model is improved through the acquisition of actual data in the future, it will be possible to examine the influence of the water environment according to various operating conditions in the environmental impact assessment of the new flood control dam.

Study on the Application of Spatial-analysis of Pollutants and Load Duration Curve for Efficient Implementation of TMDLs system (오염원 공간분석 및 오염부하지속곡선을 통한 맞춤형 수질오염총량제 추진방안 연구)

  • Park, Baekyung;Ryu, Jichul;Na, EunHye;Seo, Jiyeon;Kim, Yongseok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.12
    • /
    • pp.655-663
    • /
    • 2017
  • It is difficult to manage hotspot area and to establish the reduction plan considering with spatial-distribution on Korea TMDLs (Total Maximun Daily Loads) system. To solve this problems, methods of Load Duration Curve (LDC) using long-term flow and water quality data, and spatial-analysis were applied on present TMDLs. Jinwi A watershed which is enforced TMDLs plan were selected to study area. Results of application of suggested methods in this study to Jinwi watershed, Hwangguji tributary was selected to hotspot area and Jinwi tributary was exclued. Also, middle area of Hwangguji tributary was needed a reduction plan for the protection of non-point source pollution. In downstream area, livestock manure should be managed additionally. The new methods suggested in this study were useful to increase healthiness for total watershed.

Improvement of Sediment Trapping Efficiency Module in SWAT using VFSMOD-W Model (VFSMOD-W 모형을 이용한 SWAT 모형의 초생대 유사 저감 효율 모듈 개선)

  • Park, Younshik;Kim, Jonggun;Kim, Namwon;Park, Joonho;Jang, Won-Seok;Choi, Joongdae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.473-479
    • /
    • 2008
  • Environment problem has been arising in many countries. Especially, soil erosion has been deemed as one of the biggest issues because sediment causes muddy water and pollutants, such as agricultural chemicals, flow in the stream with this sediment. Many studies, regarding soil loss and non-point source pollution from watershed, has been performed while serious problem has been known. Soil loss occurred in most agricultural area by rainfall and runoff. It makes hydraulic structure unstable, causes environmental economical problems because muddy water destroys ecosystem and causes intake water deterioration. As revealing serious effects of muddy water by sediment, many researches have been doing with various methods. Hydraulic structures establishments such as soil erosion control dams and grit chamber are common. Vegetative filter strip is investigated in this study because vegetative filter strip is designed for reducing sediment from upland areas of the watershed, and it has many functions, not only sediment reduction but also runoff water quality improvement and wildlife habitat. With these positive functions of the vegetative filter strip, the study about vegetative filter strip has been increasing for reducing sediment because it is more effective than hydraulic structures from an environmental perspective. But the sediment trapping efficiency by vegetative filter strip, needs to be investigated and designed first. Therefore the model, VFSMOD-W, was used in this study as it can estimate sediment trapping efficiency of vegetative filter strip under various field, vegetation, weather condition. Sensitive factors to sediment trapping efficiency are studied with VFSMOD-W, and sediment trapping efficiency equation has been derived using two most sensitive factors. It is thought that the equation suggested in this study can be used in Soil and Water Assessment Tool (SWAT), to overcome the limit of SWAT filter strip module, which is based solely on filter strip width.

The Monitoring of Growth Conditions Regarding Korea Endemic Species and Natural Characteristics - Applied to Facilities Area on Highway Roadside - (한국특산식물 및 종의 자생지 특성을 고려한 식재 후 생육상태 모니터링 - 고속도로변 시설지를 대상으로 -)

  • Park, Sung-Su;Hong, Kwang-Woo;Kim, Sae-Cheon;Lee, Hyo-Yeom
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.6
    • /
    • pp.1-9
    • /
    • 2017
  • This study investigates the environmental factors of endemic species in Korea in order to understand their ecological characteristics, and to investigate the target species of their natural habitats to find similar sites. The purpose is to restore and follow suitable growth methods for the appropriate highway facility of target species to establish a management system via monitoring. This study endeavors to restore the target species near highway facilities on the basis of monitoring data and restore sites have similar natural characteristics of the target species. After restoring the target species, a restoration strategy and management plan will be established for breeding and continuation. The restoration strategy and management plan of the target species is divided into breeding, restoring, maintaining and monitoring plans. Specially management plans include several divisions such as soil, water, non-point pollution source reduction and naturalized plants. The results of this study can be used as reference materials for the restoration of endemic Korean plants in the future of highway routes, and for systematic management measures in habitats.

Evaluation of the Development and Reduction Scheme under Implementation Plan of Total Maximum Daily Loads in the Jinwi Watershed (진위천 수계의 수질오염총량제 시행에 따른 지역개발과 삭감계획 평가)

  • Han, Mideok;Ahn, Ki Hong;Ryu, Jichul;Son, Jeeyong;Park, Bae Kyung;Kim, Young Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.6
    • /
    • pp.451-459
    • /
    • 2014
  • The development and reduction scheme under implementation plan of TMDLs were performed in the Jinwi watershed including 8 cities (Gunpo, Yongin, Suwon, Anseong, Osan, Uiwang, Pyeongtaek and Hwaseong) since 2012. Progress of the annual development schemes was faster than the reduction schemes in most of the cities during the planning period. Main load reduction methods included establishment and enlargement of sewage treatment plants, resources of livestock excretions, and introduction of best management practices of non-point source pollution. Especially, reduction load using recycling and composting of livestock excretions comprised 34.1% of all reduction load. It is necessary to implement methodical development and reduction scheme for making of successful performance of TMDLs and water quality improvement in the Jinwi watershed.

A Study on the Reduction of Non-Point Source Pollution loads from Small Agricultural Watershed by Applying Surface Covering Scenario using HSPF Model (HSPF 모델을 이용한 지표피복 시나리오 적용에 따른 농촌 소유역에서의 비점원오염 저감연구)

  • Jung, Chung-Gil;Park, Jong-Yoon;Kim, Sang-Ho;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.103-103
    • /
    • 2012
  • 본 연구에서는 시험포장($1276.6m^2$)에서의 지표피복 BMPs (Best Management Practices) 시나리오를 적용하여 얻은 평균 유출저감율을 HSPF 모델에 적용하여 유역차원에서의 비점원오염 저감효과를 평가하고자 한다. 본 연구에서는 별미천 유역($1.21km^2$)을 대상으로 모형의 적용을 위한 입력자료로 기상자료와 지형자료를 구축하였으며 기상자료로 수원, 양평, 이천 기상관측소 자료를 구축하였으며, 지형자료로 격자크기 2m의 DEM (Digital Elevation Model)과 토지이용도는 2006년 5월 1일 QuickBird 영상을 제공받아 기존 환경부, 건교부, USGS의 토지피복분류체계 및 현장조사를 통하여 QuickBird 영상으로부터 추출 가능한 정밀농업정보에 대한 항목을 결정하였으며, 정사보정된 QuickBird 영상을 스크린 디지타이징 기법(On-Screen Digitizing Method)을 이용하여 총 21개 토지이용항목의 정밀토지이용도를 구축하였다. 실제모니터링으로 측정된 자료를 바탕으로 수위-유량곡선 산정 및 오염부하곡선을 선정, 2011년 6월 8일부터 10월 31일 분석기간으로 HSPF 모델링을 실시하였으며 모의결과 월별 통계에 따른 적용성 분석으로 RMSE (Root Mean Square Error) 는 1.15 ~ 1.76(mm/day), $R^2$는 0.62 ~ 0.78, Nash-Sutcliffe model efficiency (NSE)는 0.62 ~ 0.76로 모의치는 실측치와 유의성이 있는 것으로 분석되었다. 또한, Sediment, T-N, T-P의 $R^2$는 각각 0.72, 0.62, 0.63으로 상관성을 보이는 것으로 분석되었다. 시험포장으로부터 얻어진 event별 볏짚을 이용한 지표피복시나리오적용 후 밭에서의 평균 유출 약 10 % 유출율 감소 조건과 실제 평균 비점원오염 저감효과 89.7 % ~ 99.4 %의 결과로부터 지표피복효과의 침투효과를 HSPF 모델로 적용하기 위해 침투량(INFILT)를 조절하여 평균유출 약 10 %가 감소되는 16.0 mm/hr 값을 선정하였다. 그 결과, Sediment. T-N, T-P의 평균 저감율은 각각 87.2 %, 28.5 %, 85.1 %로 나타났으며 이는 시험포장에서의 실제 평균 비점오염 저감효과 89.7 % ~ 99.4 %에 근접함을 알 수 있었다. 이 결과로부터 침투량 조절에 따른 지표피복(침투짚단)효과는 Sediment, T-P에서 저감효율이 80 % 이상으로 높았지만 T-N은 약 30 %로 낮은 저감율을 보임으로써 저감효과가 크지 않음을 나타냈다.

  • PDF

Effects of VFS(Vegetative Filter System) for Reducing Non-Point Source Pollution (초생대 밭경지 비점오염저감 효과)

  • Choi, Kyung-Sook;Jang, Jeong-Ryeol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.435-435
    • /
    • 2012
  • 농경지 중에서 밭은 논보다 농약 비료 사용률이 매우 높기 때문에 논에 비해 비점오염물질 배출량이 훨씬 심각한 것으로 조사되고 있어 밭경지 비점오염저감기법 개발 및 체계적인 제어대책 수립이 무엇보다도 절실하다. 현재 선진국을 중심으로 다양하게 제시되고 있는 밭경지 비점오염 제어기법들 중 초생대에 대한 성공적 연구사례 및 적용사례에 대한 자료가 상당히 많이 제시되고 있으나, 우리나라의 경우 초생대를 적용한 밭경지 비점오염저감에 대한 기술개발 및 체계적인 연구가 아직 미비한 실정이다. 따라서 본 연구는 초생대의 현장설치 및 모니터링을 통해 초생대의 비점오염부하 저감효과에 대한 기초조사를 실시하고 우리나라 밭경지에서의 적용가능성을 알아보고자 한다. 초생대 현장 실험을 위한 시험포는 경상북도 군위군 효령면에 위치한 경북대 농생대 부속농장 밭경지 $1,500m^2$ (455평)를 선정하였다. 시험포는 1개의 대조구와 6개의 처리구로 구성하였으며, 각 시험구의 크기는 길이 12m ${\times}$ 폭 4m (초생대 길이 2m ${\times}$ 폭 4m 포함)로 하였다. 초생대 조성을 위한 초종선정은 초생대 조성이 용이하고 관리효율성이 높은 초종으로서 손쉽게 구할 수 있고, 우리나라 기후와 토양특성에 적합하며 초생대 기능에 부합한 것으로 선정하였다. 초생대 시험포장에 재배할 작물은 우리나라 대표 밭작물인 콩으로 선정하였으며, 작물재배를 위한 퇴비, 비료, 제초제 등은 농촌진흥청에서 제시한 표준재배법에 준하여 시용하였다. 초생대 비점오염저감효과를 평가하기 위해서 시험포장에 플륨, 수위계, 강우계 등으로 구성된 모니터링시스템을 설치하였으며, 플륨의 수위-유량 캘리브레이션을 실시하였다. 실험을 위해 2회의 인공강우와 1회의 자연강우에 대한 모니터링을 실시하였다. 그 결과 초생대 조성이 유출률에 상당한 영향을 미치는 것으로 조사되었다. 인공강우의 경우 초생대 설치에 따라 유출률의 범위가 14.5~95.8% 정도로 감소되는 현상을 보였으며, 자연강우에서도 6.1~11.3% 정도의 유출률 감소를 보였다. 초생대 시험구별 유출률에 차이를 나타낸 이유는 현장실험시의 시험구별 지면조건과 초생대 초종별 특성(초장, 경경, 밀도 등)의 차이에 기인한 결과로 사료되었다. 비점오염저감효과 측면에서는 기존 밭농사 방식을 그대로 채택한 대조구에 비해 초생대 시험구에서 TS의 경우 15.6~90.3%, T-P의 경우 49.9~87.8%, T-N의 경우 6.7~91.1%의 저감율을 각각 나타내었다. 이러한 결과들을 통해 초생대 기법이 우리나라 밭경지 비점오염부하를 저감시키는데 유용하게 활용될 수 있을 것으로 판단된다.

  • PDF

Evaluation of L-THIA WWW Dimet Runoff Estimation with AMC Adjustment (선행토양함수조건(AMC)을 고려한 L-THIA WWW 직접유출 모의 정확성 평가)

  • Kim, Jonggun;Park, Younshik;Jeon, Ji-Hong;Engel, Bernard A.;Ahn, Jaehun;Park, Young Kon;Kim, Ki-sung;Choi, Joongdae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.474-481
    • /
    • 2007
  • With population growth, industrialization, and urbanization within the watershed, the hydrologic response changed dramatically, resulting in increases in peak flow with lesser time to peak and total runoff with shortened time of concentration. Infiltration is directly affected by initial soil moisture condition, which is a key element to determine runoff. Influence of the initial soil moisture condition on hydrograph analysis should be evaluated to assess land use change impacts on runoff and non-point source pollution characteristics. The Long-Term Hydrologic Impact Assessment (L-THIA) model has been widely used for the estimation of the direct runoff worldwide. The L-THIA model was applied to the Little Eagle Creek (LEC) watershed and Its estimated direct runoff values were compared with the BFLOW filtered direct runoff values by other researchers. The $R^2$ value Was 0.68 and the Nash-Sutcliffe coefficient value was 0.64. Also, the L-THIA estimates were compared with those separated using optimized $BFI_{max}$ value for the Eckhardt filter. The $R^2$ value and the Nash-Sutcliffe coefficient value were 0.66 and 0.63, respectively. Although these higher statistics could indicate that the L-THIA model is good in estimating the direct runoff reasonably well, the Antecedent Moisture Condition (AMC) was not adjusted in that study, which might be responsible for mismatches in peak flow between the L-THIA estimated and the measured peak values. In this study, the L-THIA model was run with AMC adjustment for direct runoff estimation. The $R^2$ value was 0.80 and the Nash-Sutcliffe coefficient value was 0.78 for the comparison of L-THIA simulated direct runoff with the filtered direct runoff. However there was 42.44% differences in the L-THIA estimated direct runoff and filtered direct runoff. This can be explained in that about 80% of the simulation period is classified as 'AMC I' condition, which caused lower CN values and lower direct runoff estimation. Thus, the coefficients of the equation to adjust CN II to CN I and CN III depending on AMC condition were modified to minimize adjustments impacts on runoff estimation. The $R^2$ and the Nash-Sutcliffe coefficient values increase, 0.80 and 0.80 respectively. The difference in the estimated and filtered direct runoff decreased from 42.44% to 7.99%. The results obtained in this study indicate the AMC needs to be considered for accurate direct runoff estimation using the L-THIA model. Also, more researches are needed for realistic adjustment of the AMC in the L-THIA model.

Nitrogen Storage Potential in Aboveground Biomass of Three-year-old Poplar Clones in a Riparian Area (하천연변에 식재된 3년생 포플러 클론의 지상부 biomass의 질소 저장능력 추정추정)

  • Yeo, Jin-Kie;Lee, Won-Woo;Koo, Yeong-Bon;Woo, Kwan-Soo;Byun, Jae-Kyung
    • Journal of agriculture & life science
    • /
    • v.44 no.3
    • /
    • pp.15-21
    • /
    • 2010
  • We estimated the biomass productivity and the storage potential of nitrogen, the major contributor of non-point source pollution, with four three-year-old four poplar clones in a riparian woody buffer established in the Anseong River in Anseong, Korea. Stem of Populus alba ${\times}$ P. glandulosa clone 72-31 and Populus deltoides ${\times}$ P. nigra clone Dorskamp showed the highest percentage of aboveground biomass components, followed by branch and leaf. Nitrogen content in aboveground biomass components of two poplar clones was the highest in leaf and the lowest in stem. Nitrogen content in leaf and branch of clone 72-31 was higher than that of clone Dorskamp, while it in stem was lower. Populus deltoides clone Ay48 showed the highest above-ground biomass productivity, which was estimated as $37.5ton\;ha^{-1}$ at age 3. However, clone 72-31 was the lowest in above-ground biomass productivity. Nitrogen storage potential in aboveground biomass of 3-year-old poplar clones was high in order of aboveground biomass. Clone Ay48 showed the highest nitrogen storage potential in aboveground biomass, which was estimated as $218.3kg\;ha^{-1}$ at age 3.