• Title/Summary/Keyword: Non-point source

Search Result 715, Processing Time 0.028 seconds

A Study for selecting the Highway Sites' Best Management Practice for Nonpoint Source Pollution (고속도로 현장별 비점오염 저감시설 선정방안 연구)

  • Lee, Yong-Bok;Choi, Sang-Il;Park, Kye-Su;Seong, Il-Jong;Jung, Sun-Kook
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.6
    • /
    • pp.857-866
    • /
    • 2011
  • This research categorized EIA target highways into following three types in order to minimize non-point source pollution from highway runoff. 1. Big drainage basin. 2. Small drainage basin. 3. Bridge section. The Natural, Filter and Swirl-Type devices were evaluated in terms of removal efficiency of TSS, BOD, COD, T-N, T-P, compatibility of site selection, economic feasibility, and maintenance convenience through which the final BMP was selected. According to the removal efficiency result, the area of Big and Small Drainage basin and bridge section had higher removal efficiency with natural facility than that of the Filter or Swirl-Type device. To make appropriate selection of highways'BMP for non-point source pollution, this study will aim to contribute to building more environmentally friendly highways by proposing the selection process that is made of 5 stages. 1. Selecting the target drainage basin. 2. Selecting the land for the mitigation facility. 3. Analysing the ease of maintenance. 4. Technically evaluating each installation. 5. Evaluating the effective implementation methods.

A Study on Runoff Properties of Non-point Pollutant in Nakdong watershed by using SWAT model (SWAT 모형을 이용한 낙동강 하구언의 비점오염물질 유출특성 규명)

  • Lee, Eun-Jeong;Choi, Kyoung-Sik;Kim, Tae-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.815-823
    • /
    • 2012
  • Non-point source pollutants in down stream of Nakdong river were simulated by SWAT. GIS was utilized to make input data of SWAT such as landuse pattern and soil. Meteorological data of 2007 and 2009 were applied for the calibration and validation of runoff in SWAT. It was difficult to calibrate and validate the runoff and nutrient results since a study area was influenced by the tidal effects. Jindong site was selected to escape from the bias of runoff simulation in the coastal area. $R^2$ values of calibration and validation were 0.8 and 0.79. However, $R^2$ values of water qualities were very low level in comparison to runoff. These resulted from the concentration scale of water qualities such as BOD, T-N and T-P. Additionally, tidal influence could effected on the measurements of nutrients. The simulated annual averages and patterns of BOD, T-N and T-P in SWAT were similar to the measurement data. 80 ~ 96 % of nonpoint source pollutants at Nakbon M site were released from April to August of 2009. The ratio of T-N and T-P from nonpoint source were above 50 % during the rainy season.

Non-point Source Pollutants Runoft Modeling and its Management Using Quasi Distributed DEM -Focused on the Oshipchon of Samcheok (준 분포형 모형을 이용한 비점오염원 유출모델링 및 관리 -삼척 오십천을 중심으로-)

  • Kang Sang-Hyeok
    • Spatial Information Research
    • /
    • v.13 no.1 s.32
    • /
    • pp.43-53
    • /
    • 2005
  • This paper presents tile modeling of non-point source pollutants runoff and its desirable water environmental management to closed waterbody. To obtain spatially distributed environmental information, fro have used contour data to extract stream channels automatically and to divide networks of watershed. A Quasi Digital Elevation Model (DEM) has been developed, validated, and adopted to estimate the runoff of total nitrogen pollutant from watershed. The GIS-linked model can be applied effectively to the non-point source pollutants from watersheds considering water conditions in receiving waters. It will be useful to manage water environment in receiving waters.

  • PDF

A Study on Evaluation of Target Region for the Agricultural Non-point Sources Management (새만금 유역 농업비점오염원 관리를 위한 우선지구 선정연구)

  • Jang, Nam-Jung;Kim, Bo-Guk;Im, Seoung-Hyun;Kim, Tae-Kyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.23-31
    • /
    • 2012
  • Measures against non-point sources pollution in Saemangeum watershed should be established to control water quality of Saemangeum lake, because non-point sources pollution discharge portions of BOD (Biological Oxygen Demand) and TP (Total Phosphorous) in the watershed were 68.4 and 61.4%, respectively. In this study, target regions for the non-point sources pollution control were selected to apply BMP (Best Management Practices) for the agricultural area of Saemanguem watershed in terms of TP that caused eutrophication at the lake. Target regions were selected by the NPSI (Non-point source index) that was calculated by the total 12 indexes at the steps of non-point source production, emission and outflow. Weights of the indexes were determined by the watershed management experts oriented AHP (Analytic Hierarchy Process) analysis. The target region was selected at the unit of Korean basic administrative district 'Dong/Li'. At the results of NPSI calculations through the GIS (Geographical Information System) tools, two sets of 5 regions were selected in the Man-kyung River and Dong-gin River. The main reason for the selected target regions was livestock activity in the district. The results of this study can be useful for implementing the reduction projects of agricultural non-point sources pollution to control water quality in Saemangeum lake.

Study on the Discharge Characteristics of Non-point Pollutant Source in the Urban Area of the Youngsan-River Basin (영산강 유역 도시지역의 비점오염원 배출특성에 관한 연구)

  • Jin, Young-Hoon;Park, Sung-Chun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.605-613
    • /
    • 2006
  • Discharge characteristics of non-point source pollutant and load amount of the discharge in the urban area were investigated in the Pungyeongjeong-stream basin and the Yongbong-stream basin in this present study. The land use of the studied basins were divided into paddy field, industrial complex area, combined sewage system, separate sewer system and point sources discharge. The descriptive statistics on the event mean concentrations (EMCs) of non-point pollutants by the the land use showed in the range of 4.43-32.28 mg/L for BOD and 8.27~56.17 mg/L for COD. The highest concentration was shown from the combined sewage system. The EMC of SS at the paddy field in the Pungyeongjeong-stream basin showed the highest range with the values ~ from 35.76 to 358.86 mg/L, which might have been influenced by a levee construction in the adjacent of the area. The relatively high concentration values of 4.43~32.28 mg/L and 1.617.13 mg/L emerged from TN and TP,respectively, at the discharge points of the both stream basins.

Estimation of Pollutants Loading from Non-Point Sources Based on Rainfall Event and Land use Characteristics (강우강도와 토지이용을 고려한 비점오염물질 부하량 산정에 관한 연구)

  • Lee, Hye-Won;Choi, Nam-Hee;Lee, Yong-Seok;Choi, Jung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.8
    • /
    • pp.572-577
    • /
    • 2011
  • The unit load has simply been used to estimate total pollutant loading from non-point sources, however, it does not count on the variable pollutant loading according to land use characteristics and rainfall intensity. Since pollutant emission from the watershed is strongly dependent on the rainfall intensity, it is necessary to find out the relationship between pollutant loading and rainfall intensity. The objective of this study is to develop simple and easy method to compute non-point source pollution loads with consideration of rainfall intensity. Two non-point source removal facility at Gyeongan-dong (Gwangju-si) and Mohyeon-myeon (Yongin-si), Gyeonggi-do was selected to monitor total rainfall, rainfall intensity, runoff characteristics and water quality from June to November, 2010. Most of Event Mean Concentrations (EMC) of measured water quality data were higher in Gyeongan which has urban land use than in Mohyeon which has rural land use. For the case of TP (Total Phosphorus), Mohyeon has higher values by the influence of larger chemical uses such as fertilizer. The relationship between non-point source pollution load and rainfall intensity is perfectly well explained by cubic regression with 0.33~0.81 coefficients of determination($R^2$). It is expected that the pollution loading function based on the long-term monitoring would be very useful with good accuracy in computing non-point source pollution load, where a rainfall intensity is highly variable.

Analysis Characteristic of Non-point source in Petrochemical (석유화학업종에서의 비산배출원 배출 특성 분석)

  • Chiwan, Ku;Seunghyo, An;Byungchol, Ma
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.45-51
    • /
    • 2022
  • Technologies for collecting and treating pollutants from point sources are steadily being developed, but Non-point sources, it is difficult to develop emission treatment technologies and effective emission coefficients. However, since non-point sources make up about 60% of domestic emissions, and first of all, the method of calculating emissions should be reasonable, and the workplace should develop emission reduction technologies based on this. This study suggest the effectiveness and improvement of the emission coefficient currently used for the petrochemical industry with high emissions. The emission characteristics of non-point sources emission were confirmed by analyzing the LDAR (Leak Detection And Repair) data of OO company located in Yeosu, Jeollanam-do over the past five years. As a result, there was no difference in discharge characteristics according to fluid phase, but it was confirmed that there was a difference in the size of the device and the characteristics of each manufacturer. In addition, it was confirmed that the emission coefficient applied in the petrochemical industry was larger than that of the refining industry, and improvement measures were suggested. Through these studies, it is expected that emission coefficients specialized in the petrochemical industry can be applied and that the workplace itself will contribute to the development of technologies that can drastically reduce them.

Analysis of Pollutants Discharge due to the Change of Impervious Land in Urban Area Using Watershed Model (유역모형을 이용한 도시지역의 불투수면 변화에 따른 오염물질 유출 해석)

  • Gong, Seok Ho;Kim, Tae Geun
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.1
    • /
    • pp.73-82
    • /
    • 2018
  • The purpose of this study is the evaluation of the impact of increase in impervious areas due to urbanization on the pollutant discharge using the HSPF model at Musim watershed. Model calibration and validation were performed based on the observed data 2015 and 2014, all simulation items have been successfully simulated such as flow, BOD, and TP. The land cover map used in the model reflected on the land use status of the Musim watershed in 2015 and the application of the development areas and locations. As a result of simulation, during rainfall daily pollutant load with the increased impervious land increased more than that before the development. However, the pollutant load decreased during the non-rainfall time. Annual pollutant load in rainfall time was significantly higher than that in non-rainfall time, BOD and TP increased. The simulation of non-point source pollutant load was applied under two assumptions, such as the increased area of impervious land and the non-change number of point source load before and after development. As the result of a simulation, the non-point source pollutant load after development was bigger than those before development. It was necessary to take measures to control non-point source pollution at the consideration status of development.

Runoff Capture Curve for Non-Point Source Management (비점오염원 관리를 위한 유출포착곡선)

  • Kim, Sangdan;Jo, Deok Jun
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.829-836
    • /
    • 2007
  • For the purpose of managing non-point sources, water quality control basins (WQCBs) are often designed to capture rainfall events smaller than extreme events. The design rainfall statistics and runoff capture rates for sizing a WQCB should be derived from the local long-term continuous rainfall record. In this study, the 31-year continuous rainfall data recorded in Busan is analyzed to derive the synthesized runoff capture curve incorporated with SCS curve number.

Characteristics of UNFS Using Carbide Pellet and Zeolite Pellet to Remove Heavy Metals Contained in Road Runoff (탄화물 및 제올라이트 여재를 사용하는 UNFS(Upflow Non-point source Filtering System) 시설의 노면배수에 함유된 중금속 제거 특성)

  • Kim, Boo-Gil;Park, Han-Ju;Kim, Il-Ryong
    • Journal of Environmental Science International
    • /
    • v.17 no.10
    • /
    • pp.1147-1154
    • /
    • 2008
  • Road runoff, one of non-point source pollutants, contains various heavy metals, most of which flow into discharge waters without being treated. The mechanism of removing the heavy metals in water is similar to that of removing micro-particles. Therefore, it is considered that it is possible to remove a lot of the heavy metals contained in the road runoff by filtering or absorbing them. In this paper, performed has been a basic study on the characteristics of UNFS (Up Flow Non-Point Source Filtering System) using carbide pellet and zeolite pellet as double-layer filtering mediums to treat the road runoff. The removal rate with filtering and absorption time has been shown as follows: 29.0% for Cr; 27.8% for Cd; 25.7% for Fe; 25.4% for Co; 21.2% for Pb; ]9.6% for Zn; 18.2% for Al; 17.0% for Mn; 11.3% for Ni; 7.5% for Cu. The overall removal rate according to influx change has been shown to be approximately 30%, and the load of heavy metals flowing out in initial precipitation could be reduced by using carbide as a recycling filtering medium. When the removal as coarse particles settle is added up, it is expected that UNFS will result in a higher removal rate.