• 제목/요약/키워드: Non-point pollution management area

검색결과 96건 처리시간 0.031초

청양-홍성간 도로에서의 강우 시 비점오염 유출특성 및 오염부하량 분석 (Runoff Characteristics and Non-point Source Pollution Loads from Cheongyang-Hongseong Road)

  • 이춘원;강선홍;안태웅;양주경
    • 상하수도학회지
    • /
    • 제25권2호
    • /
    • pp.265-274
    • /
    • 2011
  • Nowadays, the importance of non-point source pollution treatment is being emphasized. Especially, the easy runoff characteristic of highly concentrated pollutants in the roads makes the circumstance more complicated due to impermeability of roads. When the pollutants flow into steam it could make water quality in stream worse and it also causes a bad influence in the aquatic ecosystem because the effluents of rainfall-runoff may contain indecomposable materials like oil and heavy metals. Therefore, we tried to figure out the property of non-point source pollution when it is raining and carried out an assessment for the property of runoff for non-point source pollution and EMC (Event Mean Concentrations) of the essential pollutants during this study. As the result of the study, the EMC was BOD 5.2~21.7 mg/L, COD 7.5~35.4 mg/L, TSS 71.5~466.1 mg/L, T-N 0.682~1.789 mg/L and T-P 0.174~0.378 mg/L, respectively. The decreasing rate of non-point pollutant in Chungyang-Hongsung road indicates the maximum decrease of 80% until 5 mm of rainfall based on SS concentration; by the rainy time within 20~30 minutes, the decreasing rate of SS concentration was shown as 88.0~97.6%. Therefore it was concluded that it seems to be possibly control non-point pollutants if we install equipments to treat non-point pollutants with holding capacity of 30 min. It is supposed that the result of this study could be used for non-point pollutants treatment of roads in Chungyang-Hongsung area. We also want to systematically study and consistently prepare the efficient management of runoff from non-point source pollution and pollutant loading because the characteristics of non-point source pollution runoff changes depending on different characteristics and situations of roads and rainfall.

지목정보를 이용한 토지오염지역 분석 (Analysis of the Land Pollution Area Using Land Category Information)

  • 민관식;김홍진;김재명
    • Spatial Information Research
    • /
    • 제23권1호
    • /
    • pp.33-40
    • /
    • 2015
  • 최근 토지오염은 토지이용 현황에 따라 많은 환경 문제들을 유발하고 있는 가운데 이에 대한 관리가 시급한 실정이다. 본 논문에서는 점 및 비점오염원 인자에 의한 토지오염 지역의 합리적 분석을 위해 토지의 주된 용도에 따른 지목정보를 이용하여 토양오염 지역을 분류하였다. 또한 지목정보 분석을 통해 토지오염원 정보를 효과적으로 수집할 수 있었다. 이는 토양오염 실태조사 및 관리를 위한 중요한 요소로 분류한 토지정보는 토양환경 관리와 보존을 위해 활용 되어지며 향후 토지의 이용규제와 합리적인 보존관리에 활용될 것으로 판단된다.

AHP 기법을 이용한 새만금유역의 비점오염원 우선관리지구 선정 (Prioritizing subwatersheds for non-point source pollution management in Saemangeum watershed using AHP technique)

  • 우혜진;장태일;최진규;손재권
    • 농촌계획
    • /
    • 제21권3호
    • /
    • pp.101-112
    • /
    • 2015
  • The objective of this study was to investigate non-point sources (NPS) pollution and prioritize management areas affected by NPS pollution in the Saemangeum Watershed. AHP (Analytical Hierarchy Process) technique was selected to prioritize sub-watersheds for effectively managing NPS pollution in this study areas. Generation properties of NPS pollution, discharge properties of NPS pollution, and runoff properties of NPS pollution were selected and set for AHP. Weighted descriptors including indicators like numbers of livestock, land- and livestock-system loads, rainfall, and impervious area ratio were generalized from 0 to 1 and multiply each index based on screened 17 survey data. The results were visualized as maps which enable resource managers to identify sub-watersheds for effective improving water quality. The sub-watersheds located in Gongdeok-Myeon, Yongji-Myeon, Hwangsan-Myeon of Gimje-Si were selected for managing NPS pollution control areas. This result presented that these sub-watershed are more affected by the pollution from livestock-system than from land-system. The finding from this study can be used to screen sub-watersheds that need further assessment by managers and decision-makers within the study area.

농촌유역의 비점원 오염 수질관리를 위한 인공습지 설계모형 (Design Model of Constructed Wetlands for Water Quality Management of Non-point Source Pollution in Rural Watersheds)

  • 최인욱;권순국
    • 한국농공학회지
    • /
    • 제44권5호
    • /
    • pp.96-105
    • /
    • 2002
  • As an useful water purification system for non-point source pollution in rural watersheds, interests in constructed wetlands are growing at home and abroad. It is well known that constructed wetlands are easily installed, no special managemental needs, and more flexible at fluctuating influent loads. They have a capacity for purification against nutrient materials such as phosphorus and nitrogen causing eutrophication of lentic water bodies. The Constructed Wetland Design Model (CWDM), developed through this study is consisted mainly of Database System, Runoff-discharge Prediction Submodel, Water Quality Prediction Submodel, and Area Assessment Submodel. The Database System includes data of watershed, discharge, water quality, pollution source, and design factors for the constructed wetland. It supplies data when predicting water quality and calculating the required areas of constructed wetlands. For the assessment of design flow, the GWLF (Generalized Watershed Loading Function) is used, and for water quality prediction in streams estimating influent pollutant load, Water Quality Prediction Submodel, that is a submodel of DSS-WQMRA model developed by previous works is amended. The calculation of the required areas of constructed wetlands is achieved using effluent target concentrations and area calculation equations that developed from the monitoring results in the United States. The CWDM is applied to Bokha watershed to appraise its application by assessing design flow and predicting water quality. Its application is performed through two calculations: one is to achieve each target effluent concentrations of BOD, SS, T-N and T-P, the other is to achieve overall target effluent concentrations. To prove the validity of the model, a comparison of unit removal rates between the calculated one from this study and the monitoring result from existing wetlands in Korea, Japan and United States was made. As a result, the CWDM could be very useful design tool for the constructed wetland in rural watersheds and for the non-point source pollution management.

새만금 유역 농업비점오염원 관리를 위한 우선지구 선정연구 (A Study on Evaluation of Target Region for the Agricultural Non-point Sources Management)

  • 장남정;김보국;임승현;김태균
    • 대한환경공학회지
    • /
    • 제34권1호
    • /
    • pp.23-31
    • /
    • 2012
  • 새만금 유역은 BOD와 TP의 비점오염배출 비중이 각각 68.4와 61.4% (2009년 기준)로 점오염원에 비해 높게 나타나므로 새만금 수질관리를 위해서는 비점오염원에 대한 대책수립이 시급하다. 본 연구에서는 새만금 유역 최적관리기법 대상지 선정을 위해 비점오염원의 영향이 큰 농업지역을 중심으로, 그리고 부영양화에 주요인자인 총인(TP)을 기준으로 농업비점오염대책 우선지구를 선정하고자 하였다. 우선지구 선정방안은 의사결정에 의한 오염영향 지수를 이용한 정성분석 방법으로 수계에 비점오염원(TP기준)이 작용하는 단계를 크게 발생, 배출, 유출 관련지표로 구분하여 비점오염원 영향지수(NPSI; Non-point Source Index)를 산정하였으며, 전문가 AHP (Analytic Hierarchy Process)분석을 통해 지표의 가중치를 결정하였다. NPSI 산정에는 행정구역 745개의 동리단위 기준으로 비점발생특성(해당 지역의 액비살포 면적, 축사 면적, 논면적, 밭면적, 인산질 비료사용량), 비점배출특성(수질오염 총량관리제의 축산계 비점오염원 배출부하량, 토지계 배출부하량), 비점유출특성(토양유실량, 불투수율, 유출곡선지수, 유달거리, 유효강우비)의 총 12개의 지표가 적용되었다. GIS (Geographical Information System) 분석을 이용한 NPSI 산정결과 새만금 유역 농업비점관리지역 우선지구 후보지로 만경강 5지점과 동진강 5지점을 선정하였다. 우선지구 후보지의 선정원인은 주로 축산에서 기인한 것으로 나타났으며, 이는 AHP 분석결과 축산관련 지표의 가중치가 높았기 때문으로 사료된다.

고속도로 현장별 비점오염 저감시설 선정방안 연구 (A Study for selecting the Highway Sites' Best Management Practice for Nonpoint Source Pollution)

  • 이용복;최상일;박계수;성일종;정선국
    • 환경영향평가
    • /
    • 제20권6호
    • /
    • pp.857-866
    • /
    • 2011
  • This research categorized EIA target highways into following three types in order to minimize non-point source pollution from highway runoff. 1. Big drainage basin. 2. Small drainage basin. 3. Bridge section. The Natural, Filter and Swirl-Type devices were evaluated in terms of removal efficiency of TSS, BOD, COD, T-N, T-P, compatibility of site selection, economic feasibility, and maintenance convenience through which the final BMP was selected. According to the removal efficiency result, the area of Big and Small Drainage basin and bridge section had higher removal efficiency with natural facility than that of the Filter or Swirl-Type device. To make appropriate selection of highways'BMP for non-point source pollution, this study will aim to contribute to building more environmentally friendly highways by proposing the selection process that is made of 5 stages. 1. Selecting the target drainage basin. 2. Selecting the land for the mitigation facility. 3. Analysing the ease of maintenance. 4. Technically evaluating each installation. 5. Evaluating the effective implementation methods.

GIS를 이용한 안양천 유역의 오염부하량 산정 (Estimation of Pollution Load in Anyang Stream Basin Using GIS)

  • 최종욱;유병태;이민환;김건흥
    • 환경위생공학
    • /
    • 제14권3호
    • /
    • pp.1-9
    • /
    • 1999
  • In the estimation of pollution load in water basin, a data information has generally used from surveyed data. A Geographic Information System(GIS) was adopted to evaluate the amount of pollution load in Anyang stream basin which is one of the major tributaries in the Han river flows through urban area. The digital maps of administrative boundary, stream network, sub-basin, soil type, and land-use for spatial data as well as attribute data were generated. And the database of sub-basins and pollution source was structured to estimate pollution load in Anyang stream basin by an Arc/Info GIS.As the results of this investigation, the pollution load of Mokgam-chun sub-basin was the highest amount. And that of Hagi-chun sub-basin and the fourth main stream sub-basin were also high amount in Anyang stream basin. In general, it was found that the pollution load generated from the upstream area in Kyunggi province was higher than that from downstream area in Seoul. Because the point and non-point source pollution load played very significant role in the deterioration of the water quality of the Anyang stream, an integrated approach to water quality management should be required for the sub-basins of high pollution load amount.

  • PDF

강우 시 수영강 유역의 수질변화 특성 (Characteristics of Changes in Water Quality in the Suyoung River During Rainfall Event)

  • 김수현;김정선;강임석
    • 한국물환경학회지
    • /
    • 제35권1호
    • /
    • pp.9-18
    • /
    • 2019
  • Recently, it was realized that a significant portion of pollution from urban areas originates from non-point sources such as construction sites, washoff from impervious surfaces, and sewage input from unsewered areas and combined sewer overflows. Especially, Urban stormwater runoff is one of the most extensive cause of the deterioration of the water quality in streams located in urban area. The objective of this study was to investigate runoff characteristics of non-point pollutants source at the urban area in the Suyeong River. Water quality variations were investigated at two points of Suyeong River during a period of 10 rainfall events. Concentration difference of non-point pollution source appeared big by precedent number of days of no rainfall. In addition, Event mean Concentration (EMCs) that well represents runoff characteristics of storm water during rainfall, was calculated, and runoff pollutants loading was also examined. The probability distribution of EMCs of BOD, COD, TOC, T-N, T-P, and TSS were analyzed and the mean values of observed EMC and the median values of estimated EMCs compared through probability distribution. Other objectives of this study were the characterization of discharge from non-point source, the analysis of the pollutant loads and an establishment of a management plan for non-point source of Suyeong River. Also, It was established that the most important thing for the administration of non-point pollution source is to come up with the solution for the reduction of effluent at the beginning.

BASINS-SWAT 모델을 이용한 경안천 유역의 비점원 오염배출 중점관리 대상지역 결정 (Decision of Critical Area Due to NPS Pollutant Loadings from Kyongan Stream Watershed using BASINS-SWAT)

  • 장재호;윤춘경;정광욱;손영권
    • 한국농공학회논문집
    • /
    • 제51권5호
    • /
    • pp.69-78
    • /
    • 2009
  • In order to improve water quality of upper watershed of Paldang reservoir, it is necessary to evaluate non-point source pollution loads and identify critical watershed pollution sources. A GIS based Soil and Water Assessment Tool was applied to evaluate model application and reliability, estimate NPS pollution load, identify critical watershed by NPS pollution sources, and suggest various best management practices for Kyongan Stream watershed. Yearly NPS pollution loads were estimated 30.0% SS, 60.1% TN and 35.4% TP, respectably. The watershed pollution load is mainly decided by precipitation condition and SS and nutrients load have a significant regression relationship. Based on 10-year average yearly NPS pollution load, critical sub-watersheds were identified. The No. 5 and 17 which have lots of relatively intensive agricultural fields and scattered industrial area were vary critical sub-watersheds and under more intensive pollution load. In order to control critical watershed, watershed best management practices such as scientific fertilizer, contour farming and parallel terrace, transferring the sloppy farmland to grass or forest and constructing a buffer zone, and constructing wetlands and retention ponds will be applied. Overall the SWAT model can be efficiently used for identification of critical sub-watersheds in order to develop a priority watershed management plan to reduce water pollutions.

시화호 유역 비점오염물질의 유출특성 및 부하량 연구 (Study on the Characteristics and Non-point Source Pollution Loads in Stormwater Runoff of Shihwa Lake)

  • 나공태;김경태;김종근;방재현;이정무;김성근;김은수;윤민상;조성록
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제14권1호
    • /
    • pp.40-50
    • /
    • 2011
  • 본 연구에서는 시화호로 유입되는 다양한 비점오염원 중 도심유역을 흐르는 안산천 및 화정천과 산업지역인 반월산단 토구를 통한 강우유출수 내 총부유물질, 화학적산소요구량, 용존영양염, 총인 및 총질소 등의 비점오염물질의 유출특성 및 총유출부하량을 조사하였다. 조사지역 및 조사 시기에 따라 차이는 있으나 강우 시작 후 비점오염물질의 농도가 증가한 뒤 감소하는 경향을 보였다. 총부유물질의 평균농도는 안산천이 315 mg/L로 가장 높았으며 반월산단 토구에 비해 약 2~5배 정도 높았으나 화학적산소요구량, 총인 및 총질소의 평균농도는 반월산단 토구가 도심하천에 비해 높은 것으로 나타났다. 총부유물질은 화학적산소요구량 및 총인과 양의 상관성을 보였으며 용존영양염과는 음의 상관성을 나타냈다. 반월산단 토구를 통한 비점오염물질의 총유출량은 토구의 유역면적에 비례하였으며 가장 유역면적이 넓은 3토구에서의 비점오염물질의 유출량이 가장 높았다. 조사기간 내 약 30시간 동안 반월산단토구를 통하여 총부유물질 187,536 kg, 화학적산소요구량 17,118 kg, 총인 922 kg, 총질소 13,519 kg의 비점오염물질이 유출되는 것으로 나타났다. 반월공단 토구 유역면적은 전체 시화호 소유역 중 3%를 차지하는 것을 고려할 때 막대한 양의 비점오염물질이 별다른 처리과정 없이 시화호로 직접 유출되고 있음을 알 수 있었다. 이러한 강우시 비점오염물질의 유출은 시화호 수질을 더욱 악화 시킬 것이기 때문에 비점오염원 관리 및 저감대책이 시급하게 요구되며 본 연구결과는 향후 시행예정인 시화호 연안오염총량제의 비점오염 최적관리기법 개발에 유용한 정보를 제공하고 있다.